互联网大厂CTR预估前沿进展 49
前言 CTR(click through rate)预估模型是广告推荐领域的核心问题。早期主要是使用LR(线性回归)+人工特征工程的机器学习方法,但是存在人工组合特征工程成本较高,不同任务难以复用的问题。后来随着FM因子分解机的出现,提出了使用二阶特征自动交叉的方法,缓解了人工组合特征的难题。之后2014年Facebook使用GBDT+LR方案,提出了树模型构建组合特征的思路。2015年后,由于深...
前言 CTR(click through rate)预估模型是广告推荐领域的核心问题。早期主要是使用LR(线性回归)+人工特征工程的机器学习方法,但是存在人工组合特征工程成本较高,不同任务难以复用的问题。后来随着FM因子分解机的出现,提出了使用二阶特征自动交叉的方法,缓解了人工组合特征的难题。之后2014年Facebook使用GBDT+LR方案,提出了树模型构建组合特征的思路。2015年后,由于深...
基于Transformer结构的各类语言模型(Bert基于其encoder,Gpt-2基于其decoder)早已经在各类NLP任务上大放异彩,面对让人眼花缭乱的transformer堆叠方式,你是否也会感到迷茫?没关系,现在让我们回到最初,再次看看transformer 本来的模样——Rethinking the Value of Transformer Components。该文收录已于COLI...
曾几何时,多模态预训练已经不是一个新的话题,各大顶会诸多论文仿佛搭上Visual和BERT,就能成功paper+=1,VisualBERT、ViLBERT层出不穷,傻傻分不清楚......这些年NLPer在跨界上忙活的不亦乐乎,提取视觉特征后和文本词向量一同输入到万能的Transformer中,加大力度预训练,总有意想不到的SOTA。 如何在多模态的语境中更细致准确地利用Transformer强大...
推广返利