你的 GNN,可能 99% 的参数都是冗余的 14
自从图卷积神经网络(GCN)面世以来,图神经网络(GNN)的热潮一瞬间席卷 NLP。似乎在一切 NLP 任务上,引入一个图结构,引入一个 GNN,就能让模型拥有推理能力。更重要的是,似乎在实验结果上,也能证明 GNN + NLP 的有效性。 具体地,GNN + NLP 可以分成以下两类任务: 在本来就需要图的任务上,比如知识图谱问答(KBQA),大家从问题和答案中抽取关键实体,从知识图谱中将这些实...
自从图卷积神经网络(GCN)面世以来,图神经网络(GNN)的热潮一瞬间席卷 NLP。似乎在一切 NLP 任务上,引入一个图结构,引入一个 GNN,就能让模型拥有推理能力。更重要的是,似乎在实验结果上,也能证明 GNN + NLP 的有效性。 具体地,GNN + NLP 可以分成以下两类任务: 在本来就需要图的任务上,比如知识图谱问答(KBQA),大家从问题和答案中抽取关键实体,从知识图谱中将这些实...
文 | Jerry Qiu 编 | 小轶 我们都知道,人类在很多任务上都可以很好地完成“外推”,例如: 啊不——我是说——例如,我们学会两位数的加减乘除后,就可以轻松将其推广至任意大整数的四则运算: 从数学的角度来讲,外推其实是与内插并列的一个概念。想必大家对多项式插值、样条插值等插值方法不陌生。通过已知的、离散的数据点,在范围内推求新数据点,即称为内插(Interpolation)。而如果我们在...
推广返利