推荐模型是怎样由窄变宽、越变越深的? 4
当前,深度学习推荐模型已经成功应用于推荐、广告、搜索等领域,但在了解它之前,简单回顾传统推荐模型仍是有必要的,原因如下: 即使在深度学习空前流行的今天,协同过滤、逻辑回归、因子分解机等传统推荐模型仍然凭借其可解释性、硬件环境要求低、易于快速训练和部署等不可替代的优势,在实际系统中备受青睐。 传统推荐模型是深度学习推荐模型的基础,很多深度学习推荐模型,比如基于因子分解机支持的神经网络(FNN)、深度...
当前,深度学习推荐模型已经成功应用于推荐、广告、搜索等领域,但在了解它之前,简单回顾传统推荐模型仍是有必要的,原因如下: 即使在深度学习空前流行的今天,协同过滤、逻辑回归、因子分解机等传统推荐模型仍然凭借其可解释性、硬件环境要求低、易于快速训练和部署等不可替代的优势,在实际系统中备受青睐。 传统推荐模型是深度学习推荐模型的基础,很多深度学习推荐模型,比如基于因子分解机支持的神经网络(FNN)、深度...
在互联网的排序业务中,比如搜索、推荐、广告等,AUC(Area under the Curve of ROC)是一个非常常见的评估指标。网上关于AUC的资料很多,知乎上也有不少精彩的讨论,本文尝试基于自身对AUC的理解做个综述,水平有限,欢迎指出错误。 俗话说,提出正确的问题就成功了一半,本文先提出以下几个问题,希望大家读完能够加深对下列问题的理解。 AUC有几种理解? AUC的什么特性让它如此受...
一只小狐狸带你解锁 炼丹术&NLP 秘籍 背景 搜索和推荐经常会被放在一起对比,其中最突出的区别就是搜索中存在query,需要充分考虑召回内容和query之间的相关性,而如果内容是搜索广告,则对内容有更高的要求,相关性过低的内容被展示会让用户有很差的体验。 相关性在一定程度上可以被抽象成doc和query之间的语义相似度问题,其实当前语义相似度的研究已经非常成熟,在sigir2018中有人...
一只小狐狸带你解锁NLP/ML/DL秘籍 老板~我会写倒排索引啦!我要把它放进咱们自研搜索引擎啦! 我呸!你这种demo级代码,都不够当单元测试的! 嘤嘤嘤,课本上就是这样讲的呀?! 来来,带你见识一下工业级搜索引擎里的倒排索引是怎么优化的! 前言 首先回顾一下构建倒排索引的几个主要步骤: (1) 收集待建索引的文档; (2) 对这些文档中的文本进行词条化; (3) 对第2步产生的词条进行语言学预...
推广返利