来自|Github
作者|黄海广
编译|机器之心、深度学习这件小事
《统计学习方法》可以说是机器学习的入门宝典,许多机器学习培训班、互联网企业的面试、笔试题目,很多都参考这本书。向大家推荐一个 GitHub 项目,其用 Python 复现了课程内容,并提供这本书的代码实现和课件。实现代码的配置环境是 Python 3.6,已经全部测试通过。
项目地址:https://github.com/fengdu78/lihang-code
《统计学习方法》,作者李航,本书全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k 近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与支持向量机、提升方法、EM 算法、隐马尔可夫模型和条件随机场等。除第 1 章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。
统计学习方法的代码实现
《统计学习方法》官方没有提供代码实现,但是网上有许多机器学习爱好者尝试对每一章的内容进行了代码实现。作者在 GitHub 网站搜集了一些代码进行整理,并作了一定的修改,使用 Python3.6 实现了第 1-11 章的课程代码。
代码目录与截图:
算法示例
《统计学习方法》课件
作者袁春: 清华大学深圳研究生院,提供了全书 12 章的 PPT 课件。
资源获取方式
-
点击“阅读原文”直达资源,提取码:ofmw
-
或在输入关键词“统计学习方法资料”获取资源
—完—
为您推荐
从论文到产品部署只需数天,PyText就这么给力
【千里挑一】30个超赞的机器学习开源项目
【通俗易懂】10幅图解释机器学习基本概念
深度学习,从萌新到老司机的进阶之路
拿签证威胁外籍博士后后,国外实验室导师真的可以为所欲为?
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈