作者 | Ross Taylor 编译 | ronghuaiyang
2020年Papers with Code 中最顶流的论文,代码和benchmark。
Papers with Code 中收集了各种机器学习的内容:论文,代码,结果,方便发现和比较。通过这些数据,我们可以了解ML社区中,今年哪些东西最有意思。下面我们总结了2020年最热门的带代码的论文、代码库和benchmark。
2020顶流论文
-
EfficientDet: Scalable and Efficient Object Detection — Tan et al https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object -
Fixing the train-test resolution discrepancy — Touvron et al https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2 -
ResNeSt: Split-Attention Networks — Zhang et al https://paperswithcode.com/paper/resnest-split-attention-networks -
Big Transfer (BiT) — Kolesnikov et al https://paperswithcode.com/paper/large-scale-learning-of-general-visual -
Object-Contextual Representations for Semantic Segmentation — Yuan et al https://paperswithcode.com/paper/object-contextual-representations-for -
Self-training with Noisy Student improves ImageNet classification — Xie et al https://paperswithcode.com/paper/self-training-with-noisy-student-improves -
YOLOv4: Optimal Speed and Accuracy of Object Detection — Bochkovskiy et al https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object -
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale — Dosovitskiy et al https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1 -
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer — Raffel et al https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning -
Hierarchical Multi-Scale Attention for Semantic Segmentation — Tao et al https://paperswithcode.com/paper/hierarchical-multi-scale-attention-for
2020顶流代码库
-
Transformers — Hugging Face — https://github.com/huggingface/transformers -
PyTorch Image Models — Ross Wightman — https://github.com/rwightman/pytorch-image-models -
Detectron2 — FAIR — https://github.com/facebookresearch/detectron2 -
InsightFace — DeepInsight — https://github.com/deepinsight/insightface -
Imgclsmob — osmr — https://github.com/osmr/imgclsmob -
DarkNet — pjreddie — https://github.com/pjreddie/darknet -
PyTorchGAN — Erik Linder-Norén — https://github.com/eriklindernoren/PyTorch-GAN -
MMDetection — OpenMMLab — https://github.com/open-mmlab/mmdetection -
FairSeq — PyTorch — https://github.com/pytorch/fairseq -
Gluon CV — DMLC — https://github.com/dmlc/gluon-cv
2020顶流Benchmarks
-
ImageNet — Image Classification — https://paperswithcode.com/sota/image-classification-on-imagenet -
COCO — Object Detection / Instance Segmentation — https://paperswithcode.com/sota/object-detection-on-coco -
Cityscapes — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes -
CIFAR-10 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-10 -
CIFAR-100 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-100 -
PASCAL VOC 2012 — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012 -
MPII Human Pose — Pose Estimation — https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose -
Market-1501 — Person Re-Identification — https://paperswithcode.com/sota/person-re-identification-on-market-1501 -
MNIST — Image Classification — https://paperswithcode.com/sota/image-classification-on-mnist -
Human 3.6M — Human Pose Estimation -https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
英文原文:https://medium.com/paperswithcode/papers-with-code-2020-review-938146ab9658
<section data-brushtype="text" style="padding-right: 0em;padding-left: 0em;white-space: normal;letter-spacing: 0.544px;color: rgb(62, 62, 62);font-family: "Helvetica Neue", Helvetica, "Hiragino Sans GB", "Microsoft YaHei", Arial, sans-serif;widows: 1;word-spacing: 2px;caret-color: rgb(255, 0, 0);text-align: center;"><strong style="color: rgb(0, 0, 0);font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;font-size: 14px;"><strong style="font-size: 16px;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;">—</span></strong>完<strong style="font-size: 16px;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;font-size: 14px;"><strong style="font-size: 16px;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;">—</span></strong></span></strong></span></strong></section><pre><pre><section style="letter-spacing: 0.544px;white-space: normal;font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;"><section powered-by="xiumi.us"><section style="margin-top: 15px;margin-bottom: 25px;opacity: 0.8;"><section><section style="letter-spacing: 0.544px;"><section powered-by="xiumi.us"><section style="margin-top: 15px;margin-bottom: 25px;opacity: 0.8;"><section><section style="margin-bottom: 15px;padding-right: 0em;padding-left: 0em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 25.5938px;letter-spacing: 3px;text-align: center;"><span style="color: rgb(0, 0, 0);"><strong><span style="font-size: 16px;font-family: 微软雅黑;caret-color: red;">为您推荐</span></strong></span></section><p style="margin: 5px 16px;padding-right: 0em;padding-left: 0em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;">一个算法工程师的日常是怎样的?</p><p style="margin: 5px 16px;padding-right: 0em;padding-left: 0em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;">彻底搞懂机器学习中的正则化<br /></p><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;"><span style="font-size: 14px;">13个算法工程师必须掌握的PyTorch Tricks</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;"><span style="font-size: 14px;">吴恩达上新:生成对抗网络(GAN)专项课程</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;">从SGD到NadaMax,十种优化算法原理及实现</section></section></section></section></section></section></section></section></section>
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈