机器学习术语表
1A
A/B 测试 (A/B testing)
准确率 (accuracy)
激活函数 (activation function)
AdaGrad
ROC 曲线下面积 (AUC, Area under the ROC Curve)
2B
反向传播算法 (backpropagation)
基准 (baseline)
批次 (batch)
批次大小 (batch size)
偏差 (bias)
二元分类 (binary classification)
分箱 (binning)
分桶 (bucketing)
3C
校准层 (calibration layer)
候选采样 (candidate sampling)
分类数据 (categorical data)
house style
的分类特征为例,该特征拥有一组离散的可能值(共三个),即Tudor, ranch, colonial
。通过将 house style
表示成分类数据,相应模型可以学习 Tudor
、ranch
和 colonial
分别对房价的影响。car maker
分类特征可能只允许一个样本有一个值(Toyota
)。在其他情况下,则可以应用多个值。一辆车可能会被喷涂多种不同的颜色,因此,car color
分类特征可能会允许单个样本具有多个值(例如 red
和 white
)。形心 (centroid)
检查点 (checkpoint)
类别 (class)
分类不平衡的数据集 (class-imbalanced data set)
分类模型 (classification model)
分类阈值 (classification threshold)
聚类 (clustering)
协同过滤 (collaborative filtering)
混淆矩阵 (confusion matrix)
|
|
|
|
|
|
连续特征 (continuous feature)
收敛 (convergence)
凸函数 (convex function)
-
损失函数 -
对数损失函数 -
正则化 -
正则化
凸优化 (convex optimization)
凸集 (convex set)
卷积 (convolution)
卷积过滤器 (convolutional filter)
卷积层 (convolutional layer)
卷积神经网络 (convolutional neural network)
-
卷积层 -
池化层 -
密集层
卷积运算 (convolutional operation)
-
对卷积过滤器和输入矩阵切片执行元素级乘法。(输入矩阵切片与卷积过滤器具有相同的等级和大小。) -
对生成的积矩阵中的所有值求和。
成本 (cost)
交叉熵 (cross-entropy)
自定义 Estimator (custom Estimator)
4D
数据分析 (data analysis)
DataFrame
数据集 (data set)
Dataset API (tf.data)
tf.data.Dataset
对象表示一系列元素,其中每个元素都包含一个或多个张量。tf.data.Iterator
对象可获取 Dataset
中的元素。决策边界 (decision boundary)
密集层 (dense layer)
深度模型 (deep model)
密集特征 (dense feature)
设备 (device)
离散特征 (discrete feature)
丢弃正则化 (dropout regularization)
动态模型 (dynamic model)
5E
早停法 (early stopping)
嵌套 (embeddings)
-
表示成包含百万个元素(高维度)的稀疏向量,其中所有元素都是整数。向量中的每个单元格都表示一个单独的英文单词,单元格中的值表示相应单词在句子中出现的次数。由于单个英文句子包含的单词不太可能超过50 个,因此向量中几乎每个单元格都包含 0。少数非 0的单元格中将包含一个非常小的整数(通常为1),该整数表示相应单词在句子中出现的次数。 -
表示成包含数百个元素(低维度)的密集向量,其中每个元素都存储一个介于0 到 1 之间的浮点值。这就是一种嵌套。
经验风险最小化 (ERM, empirical risk minimization)
集成学习 (ensemble)
-
不同的初始化 -
不同的超参数 -
不同的整体结构
周期 (epoch)
N
/批次大小)次训练迭代,其中N
是样本总数。Estimator
tf.Estimator
类的一个实例,用于封装负责构建 TensorFlow 图并运行TensorFlow 会话的逻辑。您可以创建自定义Estimator(如需相关介绍,请点击此处[6]),也可以实例化其他人预创建的Estimator。样本 (example)
6F
假负例 (FN, false negative)
假正例 (FP, false positive)
假正例率(false positive rate, 简称 FP 率)
特征 (feature)
特征列 (tf.feature_column)
tf.feature_column
函数,模型可对输入特征的不同表示法轻松进行实验。有关详情,请参阅《TensorFlow编程人员指南》中的特征列[7]一章。特征组合 (feature cross)
特征工程 (feature engineering)
特征集 (feature set)
特征规范 (feature spec)
-
要提取的数据(即特征的键) -
数据类型(例如 float 或 int) -
长度(固定或可变)
少量样本学习 (few-shot learning)
完整 softmax (full softmax)
全连接层 (fully connected layer)
7G
泛化 (generalization)
广义线性模型 (generalized linear model)
-
逻辑回归 -
多类别回归 -
最小二乘回归
-
最优的最小二乘回归模型的平均预测结果等于训练数据的平均标签。 -
最优的逻辑回归模型预测的平均概率等于训练数据的平均标签。
梯度 (gradient)
梯度裁剪 (gradient clipping)
梯度下降法 (gradient descent)
图 (graph)
8H
启发法 (heuristic)
隐藏层 (hidden layer)
合页损失函数 (hinge loss)
维持数据 (holdout data)
超参数 (hyperparameter)
超平面 (hyperplane)
9I
独立同等分布 (i.i.d, independently and identically distributed)
推断 (inference)
输入函数 (input function)
输入层 (input layer)
实例 (instance)
可解释性 (interpretability)
评分者间一致性信度 (inter-rater agreement)
迭代 (iteration)
10K
k-means
-
以迭代方式确定最佳的 k 中心点(称为形心)。 -
将每个样本分配到最近的形心。与同一个形心距离最近的样本属于同一个组。
k-median
-
对于k-means,确定形心的方法是,最大限度地减小候选形心与它的每个样本之间的距离平方和。 -
对于k-median,确定形心的方法是,最大限度地减小候选形心与它的每个样本之间的距离总和。
-
k-means采用从形心到样本的欧几里得距离[18]。(在二维空间中,欧几里得距离即使用勾股定理来计算斜边。)例如,(2,2)与 (5,-2) 之间的 k-means 距离为:
-
k-median采用从形心到样本的曼哈顿距离[19]。这个距离是每个维度中绝对差异值的总和。例如,(2,2)与 (5,-2) 之间的 k-median 距离为:
Keras
核支持向量机 (KSVM, Kernel Support Vector Machines)
11L
损失函数 ( loss)
正则化 ( regularization)
损失函数 ( loss)
正则化 ( regularization)
标签 (label)
有标签样本 (labeled example)
lambda
层 (layer)
Layers API (tf.layers)
-
通过 tf.layers.Dense
构建全连接层。 -
通过 tf.layers.Conv2D
构建卷积层。
学习速率 (learning rate)
最小二乘回归 (least squares regression)
线性回归 (linear regression)
逻辑回归 (logistic regression)
对数 (logits)
对数损失函数 (Log Loss)
对数几率 (log-odds)
损失 (Loss)
12M
机器学习 (machine learning)
均方误差 (MSE, Mean Squared Error)
指标 (metric)
Metrics API (tf.metrics)
tf.metrics.accuracy
用于确定模型的预测与标签匹配的频率。在编写自定义Estimator 时,您可以调用 Metrics API函数来指定应如何评估您的模型。小批次 (mini-batch)
小批次随机梯度下降法 (SGD, mini-batch stochastic gradient descent)
ML
模型 (model)
-
一种 TensorFlow 图,用于表示预测的计算结构。 -
该 TensorFlow图的特定权重和偏差,通过训练决定。
模型函数 (model function)
模型训练 (model training)
动量 (Momentum)
多类别分类 (multi-class classification)
多项分类 (multinomial classification)
13N
NaN 陷阱 (NaN trap)
负类别 (negative class)
神经网络 (neural network)
神经元 (neuron)
节点 (node)
-
隐藏层中的神经元。 -
TensorFlow 图中的操作。
标准化 (normalization)
数值数据 (numerical data)
20000
在效力上并不是邮政编码 10000的两倍(或一半)。此外,虽然不同的邮政编码确实与不同的房地产价值有关,但我们也不能假设邮政编码为20000 的房地产在价值上是邮政编码为 10000的房地产的两倍。邮政编码应表示成分类数据。Numpy
14O
目标 (objective)
离线推断 (offline inference)
独热编码 (one-hot encoding)
-
一个元素设为 1。 -
所有其他元素均设为 0。
单样本学习(one-shot learning,通常用于对象分类)
一对多 (one-vs.-all)
-
动物和非动物 -
蔬菜和非蔬菜 -
矿物和非矿物
在线推断 (online inference)
操作 (op, Operation)
优化器 (optimizer)
-
动量[26](Momentum) -
更新频率(AdaGrad[27]= ADAptive GRADientdescent;Adam[28]= ADAptive with Momentum;RMSProp) -
稀疏性/正则化(Ftrl[29]) -
更复杂的数学方法(Proximal[30],等等)
离群值 (outlier)
-
绝对值很高的权重。 -
与实际值相差很大的预测值。 -
值比平均值高大约 3 个标准偏差的输入数据。
输出层 (output layer)
过拟合 (overfitting)
15P
Pandas
参数 (parameter)
参数服务器 (PS, Parameter Server)
参数更新 (parameter update)
偏导数 (partial derivative)
划分策略 (partitioning strategy)
性能 (performance)
-
在软件工程中的传统含义。即:相应软件的运行速度有多快(或有多高效)? -
在机器学习中的含义。在机器学习领域,性能旨在回答以下问题:相应模型的准确度有多高?即模型在预测方面的表现有多好?
困惑度 (perplexity)
流水线 (pipeline)
池化 (pooling)
正类别 (positive class)
精确率 (precision)
预测 (prediction)
预测偏差 (prediction bias)
预创建的 Estimator (pre-made Estimator)
DNNClassifier
、DNNRegressor
和LinearClassifier
。您可以按照这些说明[33]构建自己预创建的Estimator。预训练模型 (pre-trained model)
先验信念 (prior belief)
16Q
队列 (queue)
17R
等级 (rank)
-
张量中的维数。例如,标量等级为 0,向量等级为1,矩阵等级为 2。 -
在将类别从最高到最低进行排序的机器学习问题中,类别的顺序位置。例如,行为排序系统可以将狗狗的奖励从最高(牛排)到最低(枯萎的羽衣甘蓝)进行排序。
评分者 (rater)
召回率 (recall)
修正线性单元 (ReLU, Rectified Linear Unit)
-
如果输入为负数或 0,则输出 0。 -
如果输入为正数,则输出等于输入。
回归模型 (regression model)
正则化 (regularization)
-
正则化 -
正则化 -
丢弃正则化 -
早停法(这不是正式的正则化方法,但可以有效限制过拟合)
正则化率 (regularization rate)
表示法 (representation)
受试者工作特征曲线(receiver operating characteristic,简称 ROC 曲线)
根目录 (root directory)
均方根误差 (RMSE, Root Mean Squared Error)
旋转不变性 (rotational invariance)
18S
SavedModel
Saver
缩放 (scaling)
scikit-learn
半监督式学习 (semi-supervised learning)
序列模型 (sequence model)
会话 (tf.session)
tf.session
对象。在使用 Estimator API 时,Estimator 会为您创建会话对象。S 型函数 (sigmoid function)
大小不变性 (size invariance)
softmax
稀疏特征 (sparse feature)
-
在某种指定语言中有很多可能的单词,但在某个指定的查询中仅包含其中几个。
稀疏表示法 (sparse representation)
-
要采用密集表示法来表示此句子,则必须为所有一百万个单元格设置一个整数,然后在大部分单元格中放入0,在少数单元格中放入一个非常小的整数。 -
要采用稀疏表示法来表示此句子,则仅存储象征句子中实际存在的单词的单元格。因此,如果句子只包含20 个独一无二的单词,那么该句子的稀疏表示法将仅在 20个单元格中存储一个整数。
稀疏性 (sparsity)
空间池化 (spatial pooling)
平方合页损失函数 (squared hinge loss)
平方损失函数 (squared loss)
静态模型 (static model)
平稳性 (stationarity)
步 (step)
步长 (step size)
随机梯度下降法 (SGD, stochastic gradient descent)
结构风险最小化 (SRM, structural risk minimization)
-
期望构建最具预测性的模型(例如损失最低)。 -
期望使模型尽可能简单(例如强大的正则化)。
步长 (stride)
下采样 (subsampling)
总结 (summary)
监督式机器学习 (supervised machine learning)
合成特征 (synthetic feature)
-
对连续特征进行分桶,以分为多个区间分箱。 -
将一个特征值与其他特征值或其本身相乘(或相除)。 -
创建一个特征组合。
19T
目标 (target)
时态数据 (temporal data)
张量 (Tensor)
张量处理单元 (TPU, Tensor Processing Unit)
张量等级 (Tensor rank)
张量形状 (Tensor shape)
张量大小 (Tensor size)
TensorBoard
TensorFlow
TensorFlow Playground
TensorFlow Serving
测试集 (test set)
tf.Example
时间序列分析 (time series analysis)
训练 (training)
训练集 (training set)
迁移学习 (transfer learning)
平移不变性 (translational invariance)
负例 (TN, true negative)
正例 (TP, true positive)
正例率(true positive rate, 简称 TP 率)
20U
无标签样本 (unlabeled example)
非监督式机器学习 (unsupervised machine learning)
21V
验证集 (validation set)
22W
权重 (weight)
宽度模型 (wide model)
[3] 自定义 estimator 说明: https://www.tensorflow.org/extend/estimators?hl=zh-CN
[4] 导入数据: https://www.tensorflow.org/programmers_guide/datasets?hl=zh-CN
[5] 深度模型和宽度模型: https://www.tensorflow.org/tutorials/wide_and_deep?hl=zh-CN
[6] 自定义 estimator 说明: https://www.tensorflow.org/extend/estimators?hl=zh-CN
[7] 特征列: https://www.tensorflow.org/get_started/feature_columns?hl=zh-CN
[8] VW: https://en.wikipedia.org/wiki/Vowpal_Wabbit
[9] 场: https://www.csie.ntu.edu.tw/~cjlin/libffm/
[10] tf.Transform: https://github.com/tensorflow/transform
[11] 高斯噪声: https://en.wikipedia.org/wiki/Gaussian_noise
[12] 泊松噪声: https://en.wikipedia.org/wiki/Shot_noise
[13] 凸优化: https://en.wikipedia.org/wiki/Convex_optimization
[14] 梯度爆炸: http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf
[15] 张量: https://www.tensorflow.org/api_docs/python/tf/Tensor?hl=zh-CN
[16] 理想气体: https://en.wikipedia.org/wiki/Ideal_gas
[17] 统计学推断: https://en.wikipedia.org/wiki/Statistical_inference
[18] 欧几里得距离: https://en.wikipedia.org/wiki/Euclidean_distance
[19] 曼哈顿距离: https://en.wikipedia.org/wiki/Taxicab_geometry
[20] Keras: https://keras.io
[21] tf.keras: https://www.tensorflow.org/api_docs/python/tf/keras?hl=zh-CN
[22] sigmoid cross entropy: https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits?hl=zh-CN
[23] NaN: https://en.wikipedia.org/wiki/NaN
[24] 开放源代码数学库: http://www.numpy.org/
[25] tf.train.Optimizer: https://www.tensorflow.org/api_docs/python/tf/train/Optimizer?hl=zh-CN
[26] 动量: https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer?hl=zh-CN
[27] AdaGrad: https://www.tensorflow.org/api_docs/python/tf/train/AdagradOptimizer?hl=zh-CN
[28] Adam: https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer?hl=zh-CN
[29] Ftrl: https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer?hl=zh-CN
[30] Proximal: https://www.tensorflow.org/api_docs/python/tf/train/ProximalGradientDescentOptimizer?hl=zh-CN
[31] NN 驱动的优化器: https://arxiv.org/abs/1606.04474
[32] Pandas 文档: http://pandas.pydata.org/
[33] 自定义Estimator说明: https://www.tensorflow.org/extend/estimators?hl=zh-CN
[34] 保存和恢复: https://www.tensorflow.org/programmers_guide/saved_model?hl=zh-CN
[35] www.scikit-learn.org: http://www.scikit-learn.org/
[36] http://playground.tensorflow.org: http://playground.tensorflow.org?hl=zh-CN
[37] 协议缓冲区: https://developers.google.com/protocol-buffers/?hl=zh-CN
[38] 原文链接: https://developers.google.com/machine-learning/glossary/?hl=zh-CN
福利
<section data-tool="mdnice编辑器" data-website="https://www.mdnice.com" style="padding: 10px;max-width: 100%;color: black;line-height: 1.6;letter-spacing: 0px;word-break: break-word;text-align: left;font-family: Optima-Regular, Optima, PingFangSC-light, PingFangTC-light, "PingFang SC", Cambria, Cochin, Georgia, Times, "Times New Roman", serif;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre style="max-width: 100%;font-size: 16px;font-weight: 700;letter-spacing: 0.544px;widows: 1;word-spacing: 1px;caret-color: rgb(51, 51, 51);color: rgb(63, 63, 63);line-height: inherit;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-role="outer" label="Powered by 135editor.com" data-darkmode-bgcolor="rgb(36, 36, 36)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-color="rgb(168, 168, 168)" data-darkmode-original-color="rgb(62, 62, 62)" data-style="max-width: 100%; font-family: -apple-system-font, BlinkMacSystemFont, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif; font-size: 16px; letter-spacing: 0.544px; white-space: normal; background-color: rgb(255, 255, 255); color: rgb(62, 62, 62); text-align: left; box-sizing: border-box !important; overflow-wrap: break-word !important;" style="max-width: 100%;font-family: -apple-system-font, BlinkMacSystemFont, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;white-space: normal;color: rgb(62, 62, 62);box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-role="outer" label="Powered by 135editor.com" data-mpa-powered-by="yiban.io" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre style="max-width: 100%;letter-spacing: 0.544px;font-size: 15px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-role="outer" label="Powered by 135editor.com" style="max-width: 100%;letter-spacing: 0.544px;white-space: normal;font-size: 16px;font-family: 微软雅黑, "Helvetica Nue", sans-serif;word-spacing: 1.6px;text-align: center;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;line-height: 1.6;letter-spacing: 0px;font-family: "Helvetica Neue", Helvetica, "Hiragino Sans GB", "Microsoft YaHei", Arial, sans-serif;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor="rgb(36, 36, 36)" data-style="background-color: rgb(255, 255, 255); color: rgba(230, 230, 230, 0.9); letter-spacing: 0.544px; text-size-adjust: auto; font-size: 16px; text-align: center; word-spacing: 1.6px;" data-darkmode-color="rgba(230, 230, 230, 0.9)" data-darkmode-original-color="rgba(230, 230, 230, 0.9)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-bgcolor-15862411819306="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15862411819306="rgb(255, 255, 255)" data-darkmode-color-15862411819306="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15862411819306="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15862671987026="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15862671987026="rgb(255, 255, 255)" data-darkmode-color-15862671987026="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15862671987026="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15864118999603="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15864118999603="rgb(255, 255, 255)" data-darkmode-color-15864118999603="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15864118999603="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15864940858736="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15864940858736="rgb(255, 255, 255)" data-darkmode-color-15864940858736="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15864940858736="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15869584691402="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15869584691402="rgb(255, 255, 255)" data-darkmode-color-15869584691402="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15869584691402="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15869584691739="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15869584691739="rgb(255, 255, 255)" data-darkmode-color-15869584691739="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15869584691739="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15873005456075="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15873005456075="rgb(255, 255, 255)" data-darkmode-color-15873005456075="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15873005456075="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15873005456615="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15873005456615="rgb(255, 255, 255)" data-darkmode-color-15873005456615="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15873005456615="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15886839320558="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15886839320558="rgb(255, 255, 255)" data-darkmode-color-15886839320558="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15886839320558="rgba(230, 230, 230, 0.9)" data-darkmode-color-159923607914210="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-159923607914210="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-159923607914210="rgb(25, 25, 25)" data-darkmode-original-bgcolor-159923607914210="rgb(255, 255, 255)" data-darkmode-bgcolor-160008070860010="rgb(25, 25, 25)" data-darkmode-original-bgcolor-160008070860010="rgb(255, 255, 255)" data-darkmode-color-160008070860010="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-160008070860010="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-16072664870629="rgb(25, 25, 25)" data-darkmode-original-bgcolor-16072664870629="rgb(255, 255, 255)" data-darkmode-color-16072664870629="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-16072664870629="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-16073544711184="rgb(25, 25, 25)" data-darkmode-original-bgcolor-16073544711184="rgb(255, 255, 255)" data-darkmode-color-16073544711184="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-16073544711184="rgba(230, 230, 230, 0.9)" style="max-width: 100%;letter-spacing: 0.544px;word-spacing: 1.6px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor="rgb(36, 36, 36)" data-style="background-color: rgb(255, 255, 255); color: rgba(230, 230, 230, 0.9); letter-spacing: 0.544px; text-size-adjust: auto; font-size: 16px; text-align: center; word-spacing: 1.6px;" data-darkmode-color="rgba(230, 230, 230, 0.9)" data-darkmode-original-color="rgba(230, 230, 230, 0.9)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-bgcolor-15862411819306="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15862411819306="rgb(255, 255, 255)" data-darkmode-color-15862411819306="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15862411819306="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15862671987026="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15862671987026="rgb(255, 255, 255)" data-darkmode-color-15862671987026="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15862671987026="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15864118999603="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15864118999603="rgb(255, 255, 255)" data-darkmode-color-15864118999603="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15864118999603="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15864940858736="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15864940858736="rgb(255, 255, 255)" data-darkmode-color-15864940858736="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15864940858736="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15869584691402="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15869584691402="rgb(255, 255, 255)" data-darkmode-color-15869584691402="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15869584691402="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15869584691739="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15869584691739="rgb(255, 255, 255)" data-darkmode-color-15869584691739="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15869584691739="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15873005456075="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15873005456075="rgb(255, 255, 255)" data-darkmode-color-15873005456075="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15873005456075="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15873005456615="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15873005456615="rgb(255, 255, 255)" data-darkmode-color-15873005456615="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15873005456615="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15886839320558="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15886839320558="rgb(255, 255, 255)" data-darkmode-color-15886839320558="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15886839320558="rgba(230, 230, 230, 0.9)" data-darkmode-color-159923607914210="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-159923607914210="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-159923607914210="rgb(25, 25, 25)" data-darkmode-original-bgcolor-159923607914210="rgb(255, 255, 255)" data-darkmode-bgcolor-160008070860010="rgb(25, 25, 25)" data-darkmode-original-bgcolor-160008070860010="rgb(255, 255, 255)" data-darkmode-color-160008070860010="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-160008070860010="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-16072664870629="rgb(25, 25, 25)" data-darkmode-original-bgcolor-16072664870629="rgb(255, 255, 255)" data-darkmode-color-16072664870629="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-16072664870629="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-16073544711184="rgb(25, 25, 25)" data-darkmode-original-bgcolor-16073544711184="rgb(255, 255, 255)" data-darkmode-color-16073544711184="rgba(163, 163, 163, 0.9)" data-darkmode-original-color-16073544711184="rgba(230, 230, 230, 0.9)" style="max-width: 100%;letter-spacing: 0.544px;word-spacing: 1.6px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><p style="max-width: 100%;min-height: 1em;font-family: -apple-system, BlinkMacSystemFont, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;white-space: normal;text-size-adjust: auto;text-align: left;box-sizing: border-box !important;overflow-wrap: break-word !important;"><img class="__bg_gif" data-ratio="0.08658008658008658" data-type="gif" data-w="462" data-width="100%" style="color: rgb(0, 0, 0);font-family: Optima-Regular, Optima, PingFangSC-light, PingFangTC-light, "PingFang SC", Cambria, Cochin, Georgia, Times, "Times New Roman", serif;display: block;box-sizing: border-box !important;overflow-wrap: break-word !important;visibility: visible !important;width: 578px !important;" src="https://www.zkxjob.com/wp-content/uploads/2022/07/wxsync-2022-07-ae45c8833e6e59cceba3c2fda2df37d1.gif" /></p><p style="max-width: 100%;min-height: 1em;font-family: -apple-system, BlinkMacSystemFont, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;white-space: normal;text-size-adjust: auto;text-align: left;box-sizing: border-box !important;overflow-wrap: break-word !important;"><br style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;" /></p>
推荐阅读:
入门: 最全的零基础学Python的问题 | 零基础学了8个月的Python | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 | 从万众期待到口碑扑街!唐探3令人失望 | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏 | 九宫格 | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!| 再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|
年度爆款文案
-
1).卧槽!Pdf转Word用Python轻松搞定!
-
2).学Python真香!我用100行代码做了个网站,帮人PS旅行图片,赚个鸡腿吃
-
3).首播过亿,火爆全网,我分析了《乘风破浪的姐姐》,发现了这些秘密
-
4).80行代码!用Python做一个哆来A梦分身
-
5).你必须掌握的20个python代码,短小精悍,用处无穷
-
6).30个Python奇淫技巧集
-
7).我总结的80页《菜鸟学Python精选干货.pdf》,都是干货
-
8).再见Python!我要学Go了!2500字深度分析!
-
9).发现一个舔狗福利!这个Python爬虫神器太爽了,自动下载妹子图片
<section data-mpa-template="t" mpa-from-tpl="t" data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(168, 168, 168)" data-darkmode-original-color-15923650965579="rgb(62, 62, 62)" data-style="color: rgb(62, 62, 62); font-size: 15px; letter-spacing: 0.544px; background-color: rgb(255, 255, 255); font-family: monospace; text-align: left; widows: 1; word-spacing: 2px; caret-color: rgb(255, 0, 0); white-space: pre-wrap;" style="max-width: 100%;font-size: 15px;letter-spacing: 0.544px;word-spacing: 2px;caret-color: rgb(255, 0, 0);color: rgb(62, 62, 62);white-space: pre-wrap;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section mpa-from-tpl="t" data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(168, 168, 168)" data-darkmode-original-color-15923650965579="rgb(62, 62, 62)" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(167, 167, 167)" data-darkmode-original-color-15923650965579="rgb(63, 63, 63)" data-style="letter-spacing: 0.544px; font-size: 16px; color: rgb(63, 63, 63); word-spacing: 1px; line-height: inherit;" style="max-width: 100%;letter-spacing: 0.544px;font-size: 16px;color: rgb(63, 63, 63);word-spacing: 1px;line-height: inherit;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-mpa-template-id="1250" data-mpa-color="#ffffff" data-mpa-category="divider" data-darkmode-bgcolor="rgb(36, 36, 36)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-color="rgb(230, 230, 230)" data-darkmode-original-color="rgb(0, 0, 0)" data-style="margin-right: 0.5em; margin-left: 0.5em; white-space: normal; font-family: -apple-system-font, system-ui, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif; color: rgb(0, 0, 0); letter-spacing: 0px; word-spacing: 2px;" data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(230, 230, 230)" data-darkmode-original-color-15923650965579="rgb(0, 0, 0)" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(167, 167, 167)" data-darkmode-original-color-15923650965579="rgb(63, 63, 63)" data-style="letter-spacing: 0.544px; font-size: 16px; color: rgb(63, 63, 63); word-spacing: 1px; line-height: inherit;" style="max-width: 100%;letter-spacing: 0.544px;line-height: inherit;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-mpa-template-id="1250" data-mpa-color="#ffffff" data-mpa-category="divider" data-darkmode-bgcolor="rgb(36, 36, 36)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-color="rgb(230, 230, 230)" data-darkmode-original-color="rgb(0, 0, 0)" data-style="margin-right: 0.5em; margin-left: 0.5em; white-space: normal; font-family: -apple-system-font, system-ui, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif; color: rgb(0, 0, 0); letter-spacing: 0px; word-spacing: 2px;" data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(230, 230, 230)" data-darkmode-original-color-15923650965579="rgb(0, 0, 0)" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" data-darkmode-bgcolor="rgb(36, 36, 36)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-color="rgb(230, 230, 230)" data-darkmode-original-color="rgb(0, 0, 0)" data-darkmode-bgcolor-15923650965579="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15923650965579="rgb(255, 255, 255)" data-darkmode-color-15923650965579="rgb(230, 230, 230)" data-darkmode-original-color-15923650965579="rgb(0, 0, 0)" style="margin-right: 0em;margin-left: 0em;max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-right: 0.5em;margin-left: 0.5em;max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-tool="mdnice编辑器" data-website="https://www.mdnice.com" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor="rgb(36, 36, 36)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-color="rgb(168, 168, 168)" data-darkmode-original-color="rgb(62, 62, 62)" data-style="letter-spacing: 0.544px; font-weight: 700; text-align: -webkit-center; background-color: rgb(255, 255, 255); font-size: 16px; color: rgb(62, 62, 62); widows: 1; word-spacing: 2px;" style="max-width: 100%;letter-spacing: 0.544px;text-align: center;color: rgb(62, 62, 62);box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-tool="mdnice编辑器" data-website="https://www.mdnice.com" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor="rgb(36, 36, 36)" data-darkmode-original-bgcolor="rgb(255, 255, 255)" data-darkmode-color="rgb(168, 168, 168)" data-darkmode-original-color="rgb(62, 62, 62)" data-style="letter-spacing: 0.544px; font-weight: 700; text-align: -webkit-center; background-color: rgb(255, 255, 255); font-size: 16px; color: rgb(62, 62, 62); widows: 1; word-spacing: 2px;" style="max-width: 100%;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre style="max-width: 100%;letter-spacing: 0.544px;text-align: left;box-sizing: border-box !important;overflow-wrap: break-word !important;"><h1 style="max-width: 100%;white-space: pre-wrap;letter-spacing: 0.544px;font-family: 微软雅黑;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section mpa-from-tpl="t" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre style="max-width: 100%;letter-spacing: 0.544px;line-height: inherit;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-mpa-template="t" mpa-from-tpl="t" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-id="94086" data-color="#276ca3" data-tools="135编辑器" mpa-from-tpl="t" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section mpa-from-tpl="t" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre style="max-width: 100%;color: rgb(63, 63, 63);letter-spacing: 0.544px;line-height: inherit;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-mpa-template="t" mpa-from-tpl="t" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-id="94086" data-color="#276ca3" data-tools="135编辑器" mpa-from-tpl="t" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section mpa-from-tpl="t" style="max-width: 100%;display: inline-block;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre style="max-width: 100%;letter-spacing: 0.544px;line-height: inherit;box-sizing: border-box !important;overflow-wrap: break-word !important;"><pre data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-style="letter-spacing: 0.544px; background-color: rgb(255, 255, 255); text-align: center; color: rgba(230, 230, 230, 0.9); font-size: 16px; line-height: 25.6px; overflow-wrap: break-word !important;" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15882396318564="rgba(230, 230, 230, 0.9)" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgba(230, 230, 230, 0.9)" data-darkmode-original-color-15900529136199="rgba(230, 230, 230, 0.9)" style="max-width: 100%;letter-spacing: 0.544px;text-align: center;color: rgba(230, 230, 230, 0.9);line-height: 25.6px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(230, 230, 230)" data-darkmode-original-color-15860613985508="rgb(0, 0, 0)" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(230, 230, 230)" data-darkmode-original-color-15870356070738="rgb(0, 0, 0)" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(230, 230, 230)" data-darkmode-original-color-15870356071023="rgb(0, 0, 0)" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(230, 230, 230)" data-darkmode-original-color-15882384789136="rgb(0, 0, 0)" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(230, 230, 230)" data-darkmode-original-color-15882396318564="rgb(0, 0, 0)" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(230, 230, 230)" data-darkmode-original-color-15900529136199="rgb(0, 0, 0)" style="max-width: 100%;display: inline-block;clear: both;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-tools="135编辑器" data-id="91842" data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(230, 230, 230)" data-darkmode-original-color-15860613985508="rgb(0, 0, 0)" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(230, 230, 230)" data-darkmode-original-color-15870356070738="rgb(0, 0, 0)" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(230, 230, 230)" data-darkmode-original-color-15870356071023="rgb(0, 0, 0)" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(230, 230, 230)" data-darkmode-original-color-15882384789136="rgb(0, 0, 0)" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(230, 230, 230)" data-darkmode-original-color-15882396318564="rgb(0, 0, 0)" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(230, 230, 230)" data-darkmode-original-color-15900529136199="rgb(0, 0, 0)" style="max-width: 100%;letter-spacing: 0.544px;border-width: 0px;border-style: none;border-color: initial;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(230, 230, 230)" data-darkmode-original-color-15860613985508="rgb(0, 0, 0)" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(230, 230, 230)" data-darkmode-original-color-15870356070738="rgb(0, 0, 0)" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(230, 230, 230)" data-darkmode-original-color-15870356071023="rgb(0, 0, 0)" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(230, 230, 230)" data-darkmode-original-color-15882384789136="rgb(0, 0, 0)" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(230, 230, 230)" data-darkmode-original-color-15882396318564="rgb(0, 0, 0)" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(230, 230, 230)" data-darkmode-original-color-15900529136199="rgb(0, 0, 0)" style="max-width: 100%;display: inline-block;clear: both;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-brushtype="text" data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(230, 230, 230)" data-darkmode-original-color-15860613985508="rgb(0, 0, 0)" data-darkmode-bgimage-15860613985508="1" data-style="padding: 18px 15px 20px 10px; color: rgb(86, 146, 214); text-align: center; letter-spacing: 1.5px; background-image: url('https://www.zkxjob.com/wp-content/uploads/2022/07/wxsync-2022-07-a2a8a5e1e58f30392066a170034ee027.png'); background-size: 100% 100%; background-repeat: no-repeat; overflow-wrap: break-word !important;" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(230, 230, 230)" data-darkmode-original-color-15870356070738="rgb(0, 0, 0)" data-darkmode-bgimage-15870356070738="1" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(230, 230, 230)" data-darkmode-original-color-15870356071023="rgb(0, 0, 0)" data-darkmode-bgimage-15870356071023="1" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(230, 230, 230)" data-darkmode-original-color-15882384789136="rgb(0, 0, 0)" data-darkmode-bgimage-15882384789136="1" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(230, 230, 230)" data-darkmode-original-color-15882396318564="rgb(0, 0, 0)" data-darkmode-bgimage-15882396318564="1" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(230, 230, 230)" data-darkmode-original-color-15900529136199="rgb(0, 0, 0)" data-darkmode-bgimage-15900529136199="1" style="padding: 18px 15px 20px 10px;max-width: 100%;background-size: 100% 100%;background-image: url('https://www.zkxjob.com/wp-content/uploads/2022/07/wxsync-2022-07-a2a8a5e1e58f30392066a170034ee027.png');color: rgb(86, 146, 214);letter-spacing: 1.5px;background-repeat: no-repeat;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(230, 230, 230)" data-darkmode-original-color-15860613985508="rgb(0, 0, 0)" data-darkmode-bgimage-15860613985508="1" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(230, 230, 230)" data-darkmode-original-color-15870356070738="rgb(0, 0, 0)" data-darkmode-bgimage-15870356070738="1" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(230, 230, 230)" data-darkmode-original-color-15870356071023="rgb(0, 0, 0)" data-darkmode-bgimage-15870356071023="1" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(230, 230, 230)" data-darkmode-original-color-15882384789136="rgb(0, 0, 0)" data-darkmode-bgimage-15882384789136="1" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(230, 230, 230)" data-darkmode-original-color-15882396318564="rgb(0, 0, 0)" data-darkmode-bgimage-15882396318564="1" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(230, 230, 230)" data-darkmode-original-color-15900529136199="rgb(0, 0, 0)" data-darkmode-bgimage-15900529136199="1" style="max-width: 100%;display: flex;justify-content: center;align-items: center;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(230, 230, 230)" data-darkmode-original-color-15860613985508="rgb(0, 0, 0)" data-darkmode-bgimage-15860613985508="1" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(230, 230, 230)" data-darkmode-original-color-15870356070738="rgb(0, 0, 0)" data-darkmode-bgimage-15870356070738="1" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(230, 230, 230)" data-darkmode-original-color-15870356071023="rgb(0, 0, 0)" data-darkmode-bgimage-15870356071023="1" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(230, 230, 230)" data-darkmode-original-color-15882384789136="rgb(0, 0, 0)" data-darkmode-bgimage-15882384789136="1" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(230, 230, 230)" data-darkmode-original-color-15882396318564="rgb(0, 0, 0)" data-darkmode-bgimage-15882396318564="1" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(230, 230, 230)" data-darkmode-original-color-15900529136199="rgb(0, 0, 0)" data-darkmode-bgimage-15900529136199="1" style="margin-left: 2px;max-width: 100%;width: 20px;box-sizing: border-box !important;overflow-wrap: break-word !important;"></section><section data-brushtype="text" data-darkmode-bgcolor-15860613985508="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15860613985508="rgb(255, 255, 255)" data-darkmode-color-15860613985508="rgb(51, 51, 51)" data-darkmode-original-color-15860613985508="rgb(51, 51, 51)" data-darkmode-bgimage-15860613985508="1" data-darkmode-bgcolor-15870356070738="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356070738="rgb(255, 255, 255)" data-darkmode-color-15870356070738="rgb(51, 51, 51)" data-darkmode-original-color-15870356070738="rgb(51, 51, 51)" data-darkmode-bgimage-15870356070738="1" data-darkmode-bgcolor-15870356071023="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15870356071023="rgb(255, 255, 255)" data-darkmode-color-15870356071023="rgb(51, 51, 51)" data-darkmode-original-color-15870356071023="rgb(51, 51, 51)" data-darkmode-bgimage-15870356071023="1" data-darkmode-bgcolor-15882384789136="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882384789136="rgb(255, 255, 255)" data-darkmode-color-15882384789136="rgb(51, 51, 51)" data-darkmode-original-color-15882384789136="rgb(51, 51, 51)" data-darkmode-bgimage-15882384789136="1" data-darkmode-bgcolor-15882396318564="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15882396318564="rgb(255, 255, 255)" data-darkmode-color-15882396318564="rgb(51, 51, 51)" data-darkmode-original-color-15882396318564="rgb(51, 51, 51)" data-darkmode-bgimage-15882396318564="1" data-darkmode-bgcolor-15900529136199="rgb(36, 36, 36)" data-darkmode-original-bgcolor-15900529136199="rgb(255, 255, 255)" data-darkmode-color-15900529136199="rgb(51, 51, 51)" data-darkmode-original-color-15900529136199="rgb(51, 51, 51)" data-darkmode-bgimage-15900529136199="1" style="max-width: 100%;font-size: 14px;color: rgb(51, 51, 51);text-align: left;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;font-family: 楷体, 楷体_GB2312, SimKai;white-space: pre-wrap;font-size: 12px;box-sizing: border-box !important;overflow-wrap: break-word !important;">点阅读原文,领廖雪峰视频资料!</span><span style="font-family: mp-quote, -apple-system-font, BlinkMacSystemFont, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 17px;text-align: justify;"></span></section></section></section></section></section></section></section>
本篇文章来源于: 菜鸟学Python
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈