来自 | 机器之心
自诞生以来,Transformer 在不同领域得到了广泛应用,研究人员也提出了许多高效 Transformer 模型。如何评估这类模型呢?最近,谷歌和 DeepMind 提出了一项系统化的统一基准——Long-Range Arena,重点关注长语境场景下的模型质量评估。
基准项目地址:https://github.com/google-research/long-range-arena
-
首先,高效 Transformer 缺少统一的基准测试,使用的任务类型也多种多样:每个模型在不同的任务和数据集上进行评估。
-
其次,评估所用基准通常是随意选择的,未充分考虑该任务是否适用于长程建模评估。
-
第三,很多论文将归纳偏置的效果和预训练的优点混为一谈,这会模糊模型的真正价值:预训练本身是计算密集型的,将归纳偏置和预训练分离开来可降低 xformer 研究的门槛。
-
1. 通用性:适用于所有高效 Transformer 模型。例如,并非所有 xformer 模型都能执行自回归解码,因此该基准中的任务仅需要编码。
-
2. 简洁性:任务设置应简单,移除所有令模型对比复杂化的因素,这可以鼓励简单模型而不是笨重的 pipeline 方法。
-
3. 挑战性:任务应该对目前模型有一定难度,以确保未来该方向的研究有足够的进步空间。
-
4. 长输入:输入序列长度应该足够长,因为评估不同模型如何捕获长程依赖是 LRA 基准的核心关注点。
-
5. 探索不同方面的能力:任务集合应当评估模型的不同能力,如建模关系和层级 / 空间结构、泛化能力等。
-
6. 非资源密集、方便使用:基准应该是轻量级的,方便不具备工业级计算资源的研究者使用。
<section data-brushtype="text" style="padding-right: 0em;padding-left: 0em;white-space: normal;letter-spacing: 0.544px;color: rgb(62, 62, 62);font-family: "Helvetica Neue", Helvetica, "Hiragino Sans GB", "Microsoft YaHei", Arial, sans-serif;widows: 1;word-spacing: 2px;caret-color: rgb(255, 0, 0);text-align: center;"><strong style="color: rgb(0, 0, 0);font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;font-size: 14px;"><strong style="font-size: 16px;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;">—</span></strong>完<strong style="font-size: 16px;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;font-size: 14px;"><strong style="font-size: 16px;letter-spacing: 0.544px;"><span style="letter-spacing: 0.5px;">—</span></strong></span></strong></span></strong></section><pre><pre><section style="letter-spacing: 0.544px;white-space: normal;font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;"><section powered-by="xiumi.us"><section style="margin-top: 15px;margin-bottom: 25px;opacity: 0.8;"><section><section style="letter-spacing: 0.544px;"><section powered-by="xiumi.us"><section style="margin-top: 15px;margin-bottom: 25px;opacity: 0.8;"><section><section style="margin-bottom: 15px;padding-right: 0em;padding-left: 0em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 25.5938px;letter-spacing: 3px;text-align: center;"><span style="color: rgb(0, 0, 0);"><strong><span style="font-size: 16px;font-family: 微软雅黑;caret-color: red;">为您推荐</span></strong></span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;">一文了解深度推荐算法的演进</section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;">干货 | 算法工程师超实用技术路线图</section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;"><span style="font-size: 14px;">13个算法工程师必须掌握的PyTorch Tricks</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;"><span style="font-size: 14px;">吴恩达上新:生成对抗网络(GAN)专项课程</span><br /></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;text-align: center;">拿到2021灰飞烟灭算法岗offer的大佬们是啥样的<span style="font-size: 14px;">?</span></section></section></section></section></section></section></section></section></section>
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈