萧箫 发自 凹非寺 转自 | 量子位
Transformer模型,是谷歌在2017年推出的NLP经典模型(Bert就是用的Transformer)。 在机器翻译任务上,Transformer表现超过了RNN和CNN,只需要编/解码器就能达到很好的效果,可以高效地并行化。
标准Transformer模型
“变种”后的Transformer模型
2种分类方法
只用编码器:可用于分类
只用解码器:可用于语言建模
编码器-解码器:可用于机器翻译
Fixed Patterns(固定模式):将视野限定为固定的预定义模式,例如局部窗口、固定步幅块,用于简化注意力矩阵; Learnable Patterns(可学习模式):以数据驱动的方式学习访问模式,关键在于确定token相关性。 Memory(内存):利用可以一次访问多个token的内存模块,例如全局存储器。 Low Rank(低秩):通过利用自注意力矩阵的低秩近似,来提高效率。 Kernels(内核):通过内核化的方式提高效率,其中核是注意力矩阵的近似,可视为低秩方法的一种。 Recurrence(递归):利用递归,连接矩阵分块法中的各个块,最终提高效率。
17种经典“X-former”
作者介绍
<pre style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;letter-spacing: 0.544px;white-space: normal;font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;widows: 1;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section><section style="margin-bottom: 15px;padding-right: 0em;padding-left: 0em;max-width: 100%;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 25.5938px;letter-spacing: 3px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(0, 0, 0);box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;font-size: 16px;font-family: 微软雅黑;caret-color: red;box-sizing: border-box !important;overflow-wrap: break-word !important;">为您推荐</span></strong></span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;">干货 | 算法工程师超实用技术路线图</section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="font-size: 14px;">那些轻轻拍了拍Attention的后浪们</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;">吴恩达推荐笔记:22 张图总结深度学习全部知识</section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;color: rgb(0, 0, 0);box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="font-size: 14px;">周博磊自述:一个神经元的价值和一个神经病的坚持</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;color: rgb(0, 0, 0);box-sizing: border-box !important;overflow-wrap: break-word !important;">你一定从未看过如此通俗易懂的YOLO系列解读 (下)</section></section></section></section></section></section></section></section></section>
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ 漫谈图神经网络06/11
- ♥ 格局打开,带你解锁 prompt 的花式用法02/17
- ♥ NeurIPS 2020 | 没有乘法的神经网络,照样起飞?01/31
- ♥ GitHub标星2.6万!Python算法新手入门大全03/22
- ♥ GPU 和显卡是什么关系?06/09
- ♥ GitHub上Star量最高的5个机器学习项目04/15
内容反馈