PyCharm操作手册,点击获取
1. 前言
众所周知,Python 最流行的爬虫框架是 Scrapy,它主要用于爬取网站结构性数据
今天推荐一款更加简单、轻量级,且功能强大的爬虫框架:feapder
项目地址:
https://github.com/Boris-code/feapder
2. 介绍及安装
和 Scrapy 类似,feapder 支持轻量级爬虫、分布式爬虫、批次爬虫、爬虫报警机制等功能
内置的 3 种爬虫如下:
-
AirSpider
轻量级爬虫,适合简单场景、数据量少的爬虫
-
Spider
分布式爬虫,基于 Redis,适用于海量数据,并且支持断点续爬、自动数据入库等功能
-
BatchSpider
分布式批次爬虫,主要用于需要周期性采集的爬虫
在实战之前,我们在虚拟环境下安装对应的依赖库
install feapder
3. 实战一下
我们以最简单的 AirSpider 来爬取一些简单的数据
目标网站:aHR0cHM6Ly90b3BodWIudG9kYXkvIA==
详细实现步骤如下( 5 步)
3-1 创建爬虫项目
首先,我们使用「 feapder create -p 」命令创建一个爬虫项目
create -p tophub_demo
3-2 创建爬虫 AirSpider
命令行进入到 spiders 文件夹目录下,使用「 feapder create -s 」命令创建一个爬虫
spiders
# 创建一个轻量级爬虫
feapder create -s tophub_spider 1
其中
-
1 为默认,表示创建一个轻量级爬虫 AirSpider
-
2 代表创建一个分布式爬虫 Spider
-
3 代表创建一个分布式批次爬虫 BatchSpider
3-3 配置数据库、创建数据表、创建映射 Item
以 Mysql 为例,首先我们在数据库中创建一张数据表
);
然后,打开项目根目录下的 settings.py 文件,配置数据库连接信息
MYSQL_IP = "localhost"
MYSQL_PORT = 3306
MYSQL_DB = "xag"
MYSQL_USER_NAME = "root"
MYSQL_USER_PASS = "root"
最后,创建映射 Item( 可选 )
进入到 items 文件夹,使用「 feapder create -i 」命令创建一个文件映射到数据库
PS:由于 AirSpider 不支持数据自动入库,所以这步不是必须
3-4 编写爬虫及数据解析
第一步,首先使「 MysqlDB 」初始化数据库
MysqlDB
class TophubSpider(feapder.AirSpider):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.db = MysqlDB()
第二步,在 start_requests 方法中,指定爬取主链接地址,使用关键字「download_midware 」配置随机 UA
UserAgent
def start_requests(self):
yield feapder.Request("https://tophub.today/", download_midware=self.download_midware)
def download_midware(self, request):
# 随机UA
# 依赖:pip3 install fake_useragent
ua = UserAgent().random
request.headers = {'User-Agent': ua}
return request
第三步,爬取首页标题、链接地址
使用 feapder 内置方法 xpath 去解析数据即可
)
# 过滤出对应的卡片元素【什么值得买】
buy_good_element = [card_element for card_element in card_elements if
card_element.xpath('.//div[@class="cc-cd-is"]//span/text()').extract_first() == '什么值得买'][0]
# 获取内部文章标题及地址
a_elements = buy_good_element.xpath('.//div[@class="cc-cd-cb nano"]//a')
for a_element in a_elements:
# 标题和链接
title = a_element.xpath('.//span[@class="t"]/text()').extract_first()
href = a_element.xpath('.//@href').extract_first()
# 再次下发新任务,并带上文章标题
yield feapder.Request(href, download_midware=self.download_midware, callback=self.parser_detail_page,
title=title)
第四步,爬取详情页面数据
上一步下发新的任务,通过关键字「 callback 」指定回调函数,最后在 parser_detail_page 中对详情页面进行数据解析
title = request.title
url = request.url
# 解析文章详情页面,获取点赞、收藏、评论数目及作者名称
author = response.xpath('//a[@class="author-title"]/text()').extract_first().strip()
print("作者:", author, '文章标题:', title, "地址:", url)
desc_elements = response.xpath('//span[@class="xilie"]/span')
print("desc数目:", len(desc_elements))
# 点赞
like_count = int(re.findall('d+', desc_elements[1].xpath('./text()').extract_first())[0])
# 收藏
collection_count = int(re.findall('d+', desc_elements[2].xpath('./text()').extract_first())[0])
# 评论
comment_count = int(re.findall('d+', desc_elements[3].xpath('./text()').extract_first())[0])
print("点赞:", like_count, "收藏:", collection_count, "评论:", comment_count)
3-5 数据入库
使用上面实例化的数据库对象执行 SQL,将数据插入到数据库中即可
# 执行
self.db.execute(sql)
4. 最后
本篇文章通过一个简单的实例,聊到了 feapder 中最简单的爬虫 AirSpider
关于 feapder 高级功能的使用,后面我将会通过一系列实例进行详细说明
我已经将文中所有代码上传到公众号后台,后台回复关键字「 airspider 」获取完整源码
如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!
-END-
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ 什么类型的python对象是08/24
- ♥ python如何判断变量是否存在?11/06
- ♥ 如何在python3中清除屏幕10/05
- ♥ 什么是 python sys 模块10/12
- ♥ 探索 python 可迭代对象的本质12/21
- ♥ 如何解决python找不到etree09/29
内容反馈