知行编程网知行编程网  2022-06-04 19:00 知行编程网 隐藏边栏 |   抢沙发  12 
文章评分 0 次,平均分 0.0

Attention最新进展

来自 | 知乎   作者|sisiyou

链接 | https://zhuanlan.zhihu.com/p/130388873

编辑 | 深度学习这件小事

本文仅作学术交流,如有侵权,请联系后台删除
Attention最新进展

本文主要总结了最新的关于attention的应用文章。

Attention-based Dropout Layer for Weakly Supervised Object Localization(CVPR19)

任务:弱监督的物体定位:只给定图像类别的标签,要求定位出目标所在的区域。

动机:只给定物体类别的话,网络往往只关注最具有判别性的信息,无法挖掘到整个物体信息。能否设计一种drop操作,每次迭代时drop最具判别性的信息,强迫网络关注其他的区域?

做法:代替之前采用CAM得到特征的热力图**,模型使用(channel-wise pooling)直接生成热力图。**采用一个设定的阈值,得到一个drop mask。

Attention最新进展

Visual Attention Consistency under Image Transforms for Multi-Label Image Classification (CVPR19)

任务:多标签图像分类问题

动机:数据增广被广泛用于图像分类任务,但是数据增广存在缺陷。图像的一些变换(如旋转)应该是比较渐层能学习到的,但是在一般使用数据增广的策略中,都只是使用最后loss来对这种变换进行学习。能否对数据增广学到的特征图进行约束。

方法:采用两分支结构。输入原始图像I和转换后的图像T(I),利用CAM得到两个特征图的热力图,约束I的热力图经过T的转换后与T(I)的热力图相同。即图像数据增广后仍然关注同样部件的区域。

Attention最新进展

AttPool: Towards Hierarchical Feature Representation in Graph Convolutional Networks via Attention Mechanism (ICCV19)

任务:定义了一个graph pooling操作。

方法:对于一个有N个节点的图(N,D),首先预测每个节点的得分(N),然后选择前K个节点(K,D),对这K个节点利用全部的N个节点进行更新(GCN)。

问题:和之前的文章Self-Attention Graph Pooling思想和做法很像,加了一步更新操作。

Attention最新进展

Group-wise Deep Object Co-Segmentation with Co-Attention Recurrent Neural Network (ICCV19)

任务:图像组间的共有物体的定位。

做法:设计了类似GRU的单元,设定了更新门和重置门,不断的更新隐单元g,使其融入了所有图像的信息,然后返回来指导每个图像的预测生成。

Attention最新进展

End-to-End Multi-Task Learning with Attention

任务:多任务学习

动机:对于多任务学习,应该有任务共享的特征和任务特定的特征。对于任务共享的特征可以通过在所有任务上学习得到。那么如何得到任务特定的特征呢?

方法:对于每个任务学习一个attention,作为特征选择器,选择与该任务相关的特征。

Attention最新进展

See More, Know More: Unsupervised Video Object Segmentation with Co-Attention Siamese Networks (CVPR19)

任务:无监督的视频物体分割

做法:提出了一个co-attention模块,将相邻帧对齐,并将F1(F2)帧的信息整合到F2(F1)上。

问题:用在视频reID上,相邻帧进行对齐后,再进行特征整合。

Attention最新进展

Improving Referring Expression Grounding with Cross-modal Attention-guided Erasing (CVPR19)

任务:跨模态的检索。给定一个语句描述,检索出图像的那个框是与之对应的。

动机:图像与语句之中可能存在多个对应关系,但是现有方法往往会过多的关注最具有判别性的对应关系。能否有一种机制,迫使网络可以关注更多的对应关系。

做法:擦除最具有判别性的语句或者图像区域。

Attention最新进展

Cross-Modal Self-Attention Network for Referring Image Segmentation

任务:跨模态分割,给定一个语句描述,分割出图像对应的物体区域。

做法:设计了一个扩模态的self attention机制,即对于query,key, value融入了图像特征和语句特征。

Attention最新进展

Mask-Guided Attention Network for Occluded Pedestrian Detection (ICCV19)

任务:遮挡的行人检测

做法:遮挡会对行人检测的性能产生较大的影响。对于特征,生成一个空间mask,mask掉遮挡区域的特征。利用可见的bounding box监督mask的生成。

Attention最新进展

Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-grained Image Recognition (CVPR)

动机:如何自适应地并且无监督的定位出物体各个部件的区域。每个channel可以响应一个特定的物体,但是单个channel的噪声大。能否整合channel使其可以定位出目标物体

做法:利用self-attention的思想,加强每个channel的特征。X为(C,N) .此时每个channel可以看做一个空间注意力图,对应一个指定的部件。

Attention最新进展


<pre style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><p style="max-width: 100%;letter-spacing: 0.544px;white-space: normal;color: rgb(0, 0, 0);font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;widows: 1;line-height: 1.75em;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;box-sizing: border-box !important;overflow-wrap: break-word !important;">—</span></strong>完<strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;box-sizing: border-box !important;overflow-wrap: break-word !important;">—</span></strong></span></strong></span></strong></p><section style="max-width: 100%;letter-spacing: 0.544px;white-space: normal;font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;widows: 1;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section><p style="margin-bottom: 15px;padding-right: 0em;padding-left: 0em;max-width: 100%;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 25.5938px;letter-spacing: 3px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(0, 0, 0);box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;font-size: 16px;font-family: 微软雅黑;caret-color: red;box-sizing: border-box !important;overflow-wrap: break-word !important;">为您推荐</span></strong></span></p><p style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;">中国大学10强!校友会2020世界一流大学排名发布</p><p style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="font-size: 14px;">GitHub重大更新:在线开发上线,是时候卸载IDE了</span></p><p style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="color: rgb(87, 107, 149);-webkit-tap-highlight-color: rgba(0, 0, 0, 0);cursor: pointer;max-width: 100%;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">史上最烂的项目:苦撑12年,600多万行代码...</span></p><p style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;">数据分析入门常用的23个牛逼Pandas代码</p><p style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;">知乎高赞:985计算机视觉毕业后找不到工作怎么办?<br  /></p></section></section></section></section></section></section></section></section>
Attention最新进展

本篇文章来源于: 深度学习这件小事

本文为原创文章,版权归所有,欢迎分享本文,转载请保留出处!

知行编程网
知行编程网 关注:1    粉丝:1
这个人很懒,什么都没写

发表评论

表情 格式 链接 私密 签到
扫一扫二维码分享