来自 | 知乎 作者 | 黄飘
地址 | https://zhuanlan.zhihu.com/p/114700229
编辑 | 深度学习这件小事
本文仅作学术分享,如有侵权,请联系后台删除
前言
1 Two-stage目标检测中的特征/任务冲突问题
1.1 Two-stage目标检测的流程与原理
1.2 现有的相关解决方案
2 One-stage目标检测中的特征不对齐问题
2.1 One-stage目标检测中的问题
2.2 “1.5-stage"解决策略
3 《1st Place Solutions for OpenImage2019 - Object Detection and Instance Segmentation》介绍
现在我们来看看商汤在OpenImage2019上的文章,可以当作技术报告来看。我们直接按照论文提到的创新点或者工作来一一说明。
-
Decoupling Head
作者出发点是目标检测框架中分类的回归任务对于特征的要求不同,而这一点在我上面提到的Double Head RCNN已经提过了。Decoupling Head则是考虑到我们前文提到的anchor和特征不对齐问题,利用传统的ROI Pooling主干预测anchor的粗略位置,然后用deform conv的方式校正分类分支。再在主干上保留原始的回归和分类任务。总而言之可以将其概括为:Double Head RCNN + AlignDet + Faster RCNN
-
Adj-NMS
这部分作者的描述方案很“有意思”,作者考虑到NMS和soft-NMS的不足,先利用0.5的IOU阈值做了一次NMS,将靠得比较近的候选框过滤掉了,然后再用基于高斯核的soft-NMS做二次过滤。
我们可以根据这个公式来看看,假设分类置信度阈值为0.5,候选框分类置信度为1,那么Soft-NMS阶段要想留下,IOU必须小于0.59,而第一次的NMS已经将IOU>0.5的候选框过滤掉了,所以这个理论上可行。因此我们可以认为作者几乎不怎么考虑特别密集拥挤的场景了。
其效果也有0.174个点的提升。其实如果注意的话,有点像前文介绍Cascade RCNN是所提到了Iterative bbox策略,即做多次NMS。SoftNMS只能通过重新打分捞回原本得分比较低的样本,但是NMS已经将大部分的候选框给过滤掉了,所以我很好奇这是怎么生效的。
-
Model Ensemble
很多大型比赛的固定策略“Ensemble",已经不奇怪了。naive ensemble的策略是借鉴的2018年的OpenImage第二名,给定bounding boxes(P),以及topk个与之IOU较高的候选框,依据验证集的分数来分配各个模型在集成时的权重,这里还分各个目标类别,然后进行加权:
这里作者训练了28个目标检测网络....,利用二叉树的方式进行模型空间搜索。
-
Data Re-sampling
确保500个类别的目标中各个类别被选取的概率相等。 -
Decoupling Backbone
对于第25~28个模型,采取Decouple Head的策略,其中回归分支的权重较小。 -
Elaborate Augmentation
随机选择一个类别,利用旋转放缩裁剪等方式进行数据增强,这样可以使得一幅图中的类别数变少,缓解数据不平衡问题。 -
Expert Model
利用专门的网络训练专门的子类别数据集,这里面考虑了正负样本均衡的问题,容易混淆(标注标准不同,表观相似)的样本。 -
AnchorSelecting
跟YOLO系列一样,利用k-means方法得到18组anchors(6种长宽比,3种尺寸)。 -
Cascade RCNN
设置了0.5,0.5,0.6,0.7四个阶段的级联检测,这我就搞不懂Adj-NMS干嘛用的了。 -
Weakly Supervised Training
由于OpenImage数据集中各类别的“长尾分布”很明显,严重不均衡,所以作者增加了一些图像级的标注,结合有监督和WSDDN算法中的弱监督算法联合训练。 -
Relationships Between Categories
作者通过分析数据集中部分类别目标之间的联系,比如person和guitar等等,类似于条件概率,来修正分类置信度,比如一个有person在旁边的guitar要比没有person的guitar置信度要高。 -
Data Understanding
作者发现OpenImage数据集中对于特定类别的目标标注有歧义,比如火炬和手电筒,剑和匕首等,所以作者将有歧义的类别细分成了上面说的多类。同时作者也发现有些目标,比如葡萄缺乏个体检测框等,作者就利用葡萄串的实例标注,扩展了很多葡萄框。
4 说在后面的话
参考资料
[1] 1st Place Solutions for OpenImage2019 - Object Detection and Instance Segmentation.
[2] Rethinking Classification and Localization for Object Detection
[3] Cascade r-cnn_ Delving into high quality object detection
[4] Acquisition of Localization Confidence for Accurate Object Detection
[5] Propose-and-Attend Single Shot Detector
[6] Selective Refinement Network for Face Detection
[7] Reppoints_ Point set representation for object detection
[8] Revisiting feature alignment for one-stage object detection
[9] Single-Shot Refinement Neural Network for Object Detection
[10] https://zhuanlan.zhihu.com/p/63273342
<pre style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;min-height: 1em;letter-spacing: 0.544px;white-space: normal;color: rgb(0, 0, 0);font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;widows: 1;line-height: 1.75em;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;box-sizing: border-box !important;overflow-wrap: break-word !important;">—</span></strong>完<strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;box-sizing: border-box !important;overflow-wrap: break-word !important;">—</span></strong></span></strong></span></strong></section><section style="max-width: 100%;letter-spacing: 0.544px;white-space: normal;font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;widows: 1;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-bottom: 15px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 25.5938px;letter-spacing: 3px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(0, 0, 0);box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;font-size: 16px;font-family: 微软雅黑;caret-color: red;box-sizing: border-box !important;overflow-wrap: break-word !important;">为您推荐</span></strong></span></section><section style="margin: 5px 32px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="font-size: 14px;">如何看待在cvpr2020中提出的circle loss?</span><br style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;" /></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(87, 107, 149);-webkit-tap-highlight-color: rgba(0, 0, 0, 0);cursor: pointer;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">研究生从入门到放弃!不好意思老板,我这周没进展</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(87, 107, 149);-webkit-tap-highlight-color: rgba(0, 0, 0, 0);cursor: pointer;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">有了这个神器,轻松用 Python 写个 App</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(87, 107, 149);-webkit-tap-highlight-color: rgba(0, 0, 0, 0);cursor: pointer;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">MIT最新深度学习入门课,安排起来!</span></section><section style="margin-top: 5px;margin-bottom: 5px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;letter-spacing: 0px;opacity: 0.8;line-height: normal;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="font-size: 14px;">一个AI PhD的毕业随感</span><br /></section></section></section></section></section></section></section></section></section>
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈