-
感知器 Perceptron
[TensorFlow 1: GitHub | Nbviewer]https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb
-
逻辑回归 Logistic Regression
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb
-
Softmax Regression (Multinomial Logistic Regression)
[TensorFlow 1: GitHub | Nbviewer]https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb
[PyTorch: GitHub | Nbviewer]https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb
-
Softmax Regression with MLxtend's plot_decision_regions on Iris
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression-mlxtend-1.ipynb
-
多层感知器 Multilayer Perceptron
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb
-
带Dropout的多层感知器 Multilayer Perceptron with Dropout
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer] -
具有批处理规范化的多层感知器 Multilayer Perceptron with Batch Normalization
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer] -
Multilayer Perceptron with Backpropagation from Scratch
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer]
基础
-
卷积神经网络 Convolutional Neural Network
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb
-
Convolutional Neural Network with He Initialization
[PyTorch: GitHub | Nbviewer]
Concepts
-
Replacing Fully-Connnected by Equivalent Convolutional Layers
[PyTorch: GitHub | Nbviewer]
Fully Convolutional
-
Fully Convolutional Neural Network
[PyTorch: GitHub | Nbviewer]
LeNet
-
LeNet-5 on MNIST
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb
-
LeNet-5 on CIFAR-10
[PyTorch: GitHub | Nbviewer] -
LeNet-5 on QuickDraw
[PyTorch: GitHub | Nbviewer]
AlexNet
-
AlexNet on CIFAR-10
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb
VGG
-
Convolutional Neural Network VGG-16
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb
[PyTorch: GitHub | Nbviewer] -
VGG-16 Gender Classifier Trained on CelebA
[PyTorch: GitHub | Nbviewer] -
Convolutional Neural Network VGG-19
[PyTorch: GitHub | Nbviewer]
DenseNet
-
DenseNet-121 Digit Classifier Trained on MNIST
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-densenet121-mnist.ipynb
-
DenseNet-121 Image Classifier Trained on CIFAR-10
[PyTorch: GitHub | Nbviewer]
ResNet
-
ResNet and Residual Blocks
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb
-
ResNet-18 Digit Classifier Trained on MNIST
[PyTorch: GitHub | Nbviewer] -
ResNet-18 Gender Classifier Trained on CelebA
[PyTorch: GitHub | Nbviewer] -
ResNet-34 Digit Classifier Trained on MNIST
[PyTorch: GitHub | Nbviewer] -
ResNet-34 Object Classifier Trained on QuickDraw
[PyTorch: GitHub | Nbviewer] -
ResNet-34 Gender Classifier Trained on CelebA
[PyTorch: GitHub | Nbviewer] -
ResNet-50 Digit Classifier Trained on MNIST
[PyTorch: GitHub | Nbviewer] -
ResNet-50 Gender Classifier Trained on CelebA
[PyTorch: GitHub | Nbviewer] -
ResNet-101 Gender Classifier Trained on CelebA
[PyTorch: GitHub | Nbviewer] -
ResNet-101 Trained on CIFAR-10
[PyTorch: GitHub | Nbviewer] -
ResNet-152 Gender Classifier Trained on CelebA
[PyTorch: GitHub | Nbviewer]
Network in Network
-
Network in Network CIFAR-10 Classifier
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb
-
BatchNorm before and after Activation for Network-in-Network CIFAR-10 Classifier
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10_batchnorm.ipynb
-
Filter Response Normalization for Network-in-Network CIFAR-10 Classifier
[PyTorch: GitHub | Nbviewer]
-
Siamese Network with Multilayer Perceptrons
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb
全连接自编码器 Fully-connected Autoencoders
-
Autoencoder (MNIST)
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb
[PyTorch: GitHub | Nbviewer] -
Autoencoder (MNIST) + Scikit-Learn Random Forest Classifier
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer]
Convolutional Autoencoders
-
Convolutional Autoencoder with Deconvolutions / Transposed Convolutions
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer] -
Convolutional Autoencoder with Deconvolutions and Continuous Jaccard Distance
[PyTorch: GitHub | Nbviewer] -
Convolutional Autoencoder with Deconvolutions (without pooling operations)
[PyTorch: GitHub | Nbviewer] -
Convolutional Autoencoder with Nearest-neighbor Interpolation
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer] -
Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on CelebA
[PyTorch: GitHub | Nbviewer] -
Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on Quickdraw
[PyTorch: GitHub | Nbviewer]
Variational Autoencoders
-
Variational Autoencoder
[PyTorch: GitHub | Nbviewer] -
Convolutional Variational Autoencoder
[PyTorch: GitHub | Nbviewer]
Conditional Variational Autoencoders
-
Conditional Variational Autoencoder (with labels in reconstruction loss)
[PyTorch: GitHub | Nbviewer] -
Conditional Variational Autoencoder (without labels in reconstruction loss)
[PyTorch: GitHub | Nbviewer] -
Convolutional Conditional Variational Autoencoder (with labels in reconstruction loss)
[PyTorch: GitHub | Nbviewer] -
Convolutional Conditional Variational Autoencoder (without labels in reconstruction loss)
[PyTorch: GitHub | Nbviewer]
-
Fully Connected GAN on MNIST
[TensorFlow 1: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb
[PyTorch: GitHub | Nbviewer] -
Fully Connected Wasserstein GAN on MNIST
[PyTorch: GitHub | Nbviewer] -
Convolutional GAN on MNIST
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer] -
Convolutional GAN on MNIST with Label Smoothing
[TensorFlow 1: GitHub | Nbviewer]
[PyTorch: GitHub | Nbviewer] -
Convolutional Wasserstein GAN on MNIST
[PyTorch: GitHub | Nbviewer]
-
Most Basic Graph Neural Network with Gaussian Filter on MNIST
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gnn/gnn-basic-1.ipynb
-
Basic Graph Neural Network with Edge Prediction on MNIST
[PyTorch: GitHub | Nbviewer] -
Basic Graph Neural Network with Spectral Graph Convolution on MNIST
[PyTorch: GitHub | Nbviewer]
Many-to-one: Sentiment Analysis / Classification
-
A simple single-layer RNN (IMDB)
[PyTorch: GitHub | Nbviewer]https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb
-
A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)
[PyTorch: GitHub | Nbviewer] -
RNN with LSTM cells (IMDB)
[PyTorch: GitHub | Nbviewer] -
RNN with LSTM cells (IMDB) and pre-trained GloVe word vectors
[PyTorch: GitHub | Nbviewer] -
RNN with LSTM cells and Own Dataset in CSV Format (IMDB)
[PyTorch: GitHub | Nbviewer] -
RNN with GRU cells (IMDB)
[PyTorch: GitHub | Nbviewer] -
Multilayer bi-directional RNN (IMDB)
[PyTorch: GitHub | Nbviewer] -
Bidirectional Multi-layer RNN with LSTM with Own Dataset in CSV Format (AG News)
[PyTorch: GitHub | Nbviewer] -
Bidirectional Multi-layer RNN with LSTM with Own Dataset in CSV Format (Yelp Review Polarity)
[PyTorch: GitHub | Nbviewer] -
Bidirectional Multi-layer RNN with LSTM with Own Dataset in CSV Format (Amazon Review Polarity)
[PyTorch: GitHub | Nbviewer]
Many-to-Many / Sequence-to-Sequence
-
A simple character RNN to generate new text (Charles Dickens)
[PyTorch: GitHub | Nbviewer]
-
Ordinal Regression CNN -- CORAL w. ResNet34 on AFAD-Lite
[PyTorch: GitHub | Nbviewer] -
Ordinal Regression CNN -- Niu et al. 2016 w. ResNet34 on AFAD-Lite
[PyTorch: GitHub | Nbviewer] -
Ordinal Regression CNN -- Beckham and Pal 2016 w. ResNet34 on AFAD-Lite
[PyTorch: GitHub | Nbviewer]
-
Cyclical Learning Rate
[PyTorch: GitHub | Nbviewer] -
Annealing with Increasing the Batch Size (w. CIFAR-10 & AlexNet)
[PyTorch: GitHub | Nbviewer] -
Gradient Clipping (w. MLP on MNIST)
[PyTorch: GitHub | Nbviewer]
迁移学习 Transfer Learning
-
Transfer Learning Example (VGG16 pre-trained on ImageNet for Cifar-10)
Custom Datasets
-
Custom Data Loader Example for PNG Files
[PyTorch: GitHub | Nbviewer] -
Using PyTorch Dataset Loading Utilities for Custom Datasets -- CSV files converted to HDF5
[PyTorch: GitHub | Nbviewer] -
Using PyTorch Dataset Loading Utilities for Custom Datasets -- Face Images from CelebA
[PyTorch: GitHub | Nbviewer] -
Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from Quickdraw
[PyTorch: GitHub | Nbviewer] -
Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from the Street View House Number (SVHN) Dataset
[PyTorch: GitHub | Nbviewer] -
Using PyTorch Dataset Loading Utilities for Custom Datasets -- Asian Face Dataset (AFAD)
[PyTorch: GitHub | Nbviewer] -
Using PyTorch Dataset Loading Utilities for Custom Datasets -- Dating Historical Color Images
[PyTorch: GitHub | Nbviewer]
Training and Preprocessing
-
Generating Validation Set Splits
[PyTorch]: GitHub | Nbviewer] -
Dataloading with Pinned Memory
[PyTorch: GitHub | Nbviewer] -
Standardizing Images
[PyTorch: GitHub | Nbviewer] -
Image Transformation Examples
[PyTorch: GitHub | Nbviewer] -
Char-RNN with Own Text File
[PyTorch: GitHub | Nbviewer] -
Sentiment Classification RNN with Own CSV File
[PyTorch: GitHub | Nbviewer]
Parallel Computing
-
Using Multiple GPUs with DataParallel -- VGG-16 Gender Classifier on CelebA
[PyTorch: GitHub | Nbviewer]
Other
-
Sequential API and hooks
[PyTorch: GitHub | Nbviewer] -
Weight Sharing Within a Layer
[PyTorch: GitHub | Nbviewer] -
Plotting Live Training Performance in Jupyter Notebooks with just Matplotlib
[PyTorch: GitHub | Nbviewer]
Autograd
-
Getting Gradients of an Intermediate Variable in PyTorch
[PyTorch: GitHub | Nbviewer]
Custom Datasets
-
Chunking an Image Dataset for Minibatch Training using NumPy NPZ Archives
[TensorFlow 1: GitHub | Nbviewer] -
Storing an Image Dataset for Minibatch Training using HDF5
[TensorFlow 1: GitHub | Nbviewer] -
Using Input Pipelines to Read Data from TFRecords Files
[TensorFlow 1: GitHub | Nbviewer] -
Using Queue Runners to Feed Images Directly from Disk
[TensorFlow 1: GitHub | Nbviewer] -
Using TensorFlow's Dataset API
[TensorFlow 1: GitHub | Nbviewer]
Training and Preprocessing
-
Saving and Loading Trained Models -- from TensorFlow Checkpoint Files and NumPy NPZ Archives
[TensorFlow 1: GitHub | Nbviewer]
<pre style="max-width: 100%;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-right: 8px;margin-left: 8px;max-width: 100%;white-space: normal;color: rgb(0, 0, 0);font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-align: center;widows: 1;line-height: 1.75em;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;box-sizing: border-box !important;overflow-wrap: break-word !important;">—</span></strong>完<strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;font-size: 16px;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;letter-spacing: 0.5px;box-sizing: border-box !important;overflow-wrap: break-word !important;">—</span></strong></span></strong></span></strong></section><section style="max-width: 100%;white-space: normal;font-family: -apple-system-font, system-ui, "Helvetica Neue", "PingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-align: center;widows: 1;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;letter-spacing: 0.544px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section powered-by="xiumi.us" style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-top: 15px;margin-bottom: 25px;max-width: 100%;opacity: 0.8;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><section style="margin-right: 8px;margin-bottom: 15px;margin-left: 8px;padding-right: 0em;padding-left: 0em;max-width: 100%;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 25.5938px;letter-spacing: 3px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(0, 0, 0);box-sizing: border-box !important;overflow-wrap: break-word !important;"><strong style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;font-size: 16px;font-family: 微软雅黑;caret-color: red;box-sizing: border-box !important;overflow-wrap: break-word !important;">为您推荐</span></strong></span></section><p style="margin-right: 8px;margin-bottom: 5px;margin-left: 8px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 1.75em;letter-spacing: 0px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;">“12306”的架构到底有多牛逼?</span></p><p style="margin-right: 8px;margin-bottom: 5px;margin-left: 8px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 1.75em;letter-spacing: 0px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;">中国程序员34岁生日当天在美国遭抢笔记本电脑,追击歹徒被拖行后身亡,为什么会发生此类事件?</span></p><p style="margin-right: 8px;margin-bottom: 5px;margin-left: 8px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 1.75em;letter-spacing: 0px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;-webkit-tap-highlight-color: rgba(0, 0, 0, 0);cursor: pointer;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">阿里如何抗住90秒100亿?看这篇你就明白了!</span></p><p style="margin-right: 8px;margin-bottom: 5px;margin-left: 8px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;font-family: sans-serif;line-height: 1.75em;letter-spacing: 0px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;color: rgb(87, 107, 149);box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">60个Chrome神器插件大收集:助你快速成为老司机,一键分析网站技术栈</span></span><br style="max-width: 100%;box-sizing: border-box !important;overflow-wrap: break-word !important;" /></p><p style="margin-right: 8px;margin-bottom: 5px;margin-left: 8px;padding-right: 0em;padding-left: 0em;max-width: 100%;min-height: 1em;color: rgb(127, 127, 127);font-size: 12px;font-family: sans-serif;line-height: 1.75em;letter-spacing: 0px;box-sizing: border-box !important;overflow-wrap: break-word !important;"><span style="max-width: 100%;-webkit-tap-highlight-color: rgba(0, 0, 0, 0);cursor: pointer;font-size: 14px;box-sizing: border-box !important;overflow-wrap: break-word !important;">深度学习必懂的13种概率分布</span></p></section></section></section></section></section></section></section></section>
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈