本文为 AI 研习社社区用户 @mantch 的博客内容,欢迎扫描底部社区名片访问 @mantch 的主页,查看更多内容。
作者表示,BERT 这样基于去噪自编码器的预训练模型可以很好地建模双向语境信息,性能优于基于自回归语言模型的预训练方法。然而,由于需要 mask 一部分输入,BERT 忽略了被 mask 位置之间的依赖关系,因此出现预训练和微调效果的差异(pretrain-finetune discrepancy)。
基于这些优缺点,该研究提出了一种泛化的自回归预训练模型 XLNet。XLNet 可以:
-
通过最大化所有可能的因式分解顺序的对数似然,学习双向语境信息;
-
用自回归本身的特点克服 BERT 的缺点;
-
此外,XLNet 还融合了当前最优自回归模型 Transformer-XL 的思路。
自回归语言模型有优点有缺点:
缺点是只能利用上文或者下文的信息,不能同时利用上文和下文的信息,当然,貌似ELMO这种双向都做,然后拼接看上去能够解决这个问题,因为融合模式过于简单,所以效果其实并不是太好。
优点其实跟下游NLP任务有关,比如生成类NLP任务,比如文本摘要,机器翻译等,在实际生成内容的时候,就是从左向右的,自回归语言模型天然匹配这个过程。而Bert这种DAE模式,在生成类NLP任务中,就面临训练过程和应用过程不一致的问题,导致生成类的NLP任务到目前为止都做不太好。
这种DAE LM的优缺点正好和自回归LM反过来,它能比较自然地融入双向语言模型,同时看到被预测单词的上文和下文,这是好处。缺点是啥呢?主要在输入侧引入[Mask]标记,导致预训练阶段和Fine-tuning阶段不一致的问题,因为Fine-tuning阶段是看不到[Mask]标记的。DAE吗,就要引入噪音,[Mask] 标记就是引入噪音的手段,这个正常。
XLNet的出发点就是:能否融合自回归LM和DAE LM两者的优点。就是说如果站在自回归LM的角度,如何引入和双向语言模型等价的效果;如果站在DAE LM的角度看,它本身是融入双向语言模型的,如何抛掉表面的那个[Mask]标记,让预训练和Fine-tuning保持一致。当然,XLNet还讲到了一个Bert被Mask单词之间相互独立的问题。
4.1 排列语言建模(Permutation Language Modeling)
Bert的自编码语言模型也有对应的缺点,就是XLNet在文中指出的:
-
第一个预训练阶段因为采取引入[Mask]标记来Mask掉部分单词的训练模式,而Fine-tuning阶段是看不到这种被强行加入的Mask标记的,所以两个阶段存在使用模式不一致的情形,这可能会带来一定的性能损失;
-
另外一个是,Bert在第一个预训练阶段,假设句子中多个单词被Mask掉,这些被Mask掉的单词之间没有任何关系,是条件独立的,而有时候这些单词之间是有关系的。
上面两点是XLNet在第一个预训练阶段,相对Bert来说要解决的两个问题。
其实思路也比较简洁,可以这么思考:XLNet仍然遵循两阶段的过程,第一个阶段是语言模型预训练阶段;第二阶段是任务数据Fine-tuning阶段。它主要希望改动第一个阶段,就是说不像Bert那种带Mask符号的Denoising-autoencoder的模式,而是采用自回归LM的模式。就是说,看上去输入句子X仍然是自左向右的输入,看到Ti单词的上文Context_before,来预测Ti这个单词。但是又希望在Context_before里,不仅仅看到上文单词,也能看到Ti单词后面的下文Context_after里的下文单词,这样的话,Bert里面预训练阶段引入的Mask符号就不需要了,于是在预训练阶段,看上去是个标准的从左向右过程,Fine-tuning当然也是这个过程,于是两个环节就统一起来。当然,这是目标。剩下是怎么做到这一点的问题。
首先,需要强调一点,尽管上面讲的是把句子X的单词排列组合后,再随机抽取例子作为输入,但是,实际上你是不能这么做的,因为Fine-tuning阶段你不可能也去排列组合原始输入。所以,就必须让预训练阶段的输入部分,看上去仍然是x1,x2,x3,x4这个输入顺序,但是可以在Transformer部分做些工作,来达成我们希望的目标。
具体而言,XLNet采取了Attention掩码的机制,你可以理解为,当前的输入句子是X,要预测的单词Ti是第i个单词,前面1到i-1个单词,在输入部分观察,并没发生变化,该是谁还是谁。但是在Transformer内部,通过Attention掩码,从X的输入单词里面,也就是Ti的上文和下文单词中,随机选择i-1个,放到Ti的上文位置中,把其它单词的输入通过Attention掩码隐藏掉,于是就能够达成我们期望的目标(当然这个所谓放到Ti的上文位置,只是一种形象的说法,其实在内部,就是通过Attention Mask,把其它没有被选到的单词Mask掉,不让它们在预测单词Ti的时候发生作用,如此而已。看着就类似于把这些被选中的单词放到了上文Context_before的位置了)。
具体实现的时候,XLNet是用“双流自注意力模型”实现的,细节可以参考论文,但是基本思想就如上所述,双流自注意力机制只是实现这个思想的具体方式,理论上,你可以想出其它具体实现方式来实现这个基本思想,也能达成让Ti看到下文单词的目标。
这里简单说下“双流自注意力机制”,一个是内容流自注意力,其实就是标准的Transformer的计算过程;主要是引入了Query流自注意力,这个是干嘛的呢?其实就是用来代替Bert的那个[Mask]标记的,因为XLNet希望抛掉[Mask]标记符号,但是比如知道上文单词x1,x2,要预测单词x3,此时在x3对应位置的Transformer最高层去预测这个单词,但是输入侧不能看到要预测的单词x3,Bert其实是直接引入[Mask]标记来覆盖掉单词x3的内容的,等于说[Mask]是个通用的占位符号。而XLNet因为要抛掉[Mask]标记,但是又不能看到x3的输入,于是Query流,就直接忽略掉x3输入了,只保留这个位置信息,用参数w来代表位置的embedding编码。其实XLNet只是扔了表面的[Mask]占位符号,内部还是引入Query流来忽略掉被Mask的这个单词。和Bert比,只是实现方式不同而已。
上面讲的Permutation Language Model是XLNet的主要理论创新,所以介绍的比较多,从模型角度讲,这个创新还是挺有意思的,因为它开启了自回归语言模型如何引入下文的一个思路,相信对于后续工作会有启发。当然,XLNet不仅仅做了这些,它还引入了其它的因素,也算是一个当前有效技术的集成体。感觉XLNet就是Bert、GPT 2.0和Transformer XL的综合体变身:
-
首先,它通过PLM(Permutation Language Model)预训练目标,吸收了Bert的双向语言模型;
-
然后,GPT2.0的核心其实是更多更高质量的预训练数据,这个明显也被XLNet吸收进来了;
-
再然后,Transformer XL的主要思想也被吸收进来,它的主要目标是解决Transformer对于长文档NLP应用不够友好的问题。
4.2 Transformer XL
目前在NLP领域中,处理语言建模问题有两种最先进的架构:RNN和Transformer。RNN按照序列顺序逐个学习输入的单词或字符之间的关系,而Transformer则接收一整段序列,然后使用self-attention机制来学习它们之间的依赖关系。这两种架构目前来看都取得了令人瞩目的成就,但它们都局限在捕捉长期依赖性上。
为了解决这一问题,CMU联合Google Brain在2019年1月推出的一篇新论文《Transformer-XL:Attentive Language Models beyond a Fixed-Length Context》同时结合了RNN序列建模和Transformer自注意力机制的优点,在输入数据的每个段上使用Transformer的注意力模块,并使用循环机制来学习连续段之间的依赖关系。
-
4.2.1 vanilla Transformer
为何要提这个模型?因为Transformer-XL是基于这个模型进行的改进。
Al-Rfou等人基于Transformer提出了一种训练语言模型的方法,来根据之前的字符预测片段中的下一个字符。例如,它使用 $x1,x_2,…,x{n-1}$ 预测字符 $x_n$,而在 $x_n$ 之后的序列则被mask掉。论文中使用64层模型,并仅限于处理 512个字符这种相对较短的输入,因此它将输入分成段,并分别从每个段中进行学习,如下图所示。 在测试阶段如需处理较长的输入,该模型会在每一步中将输入向右移动一个字符,以此实现对单个字符的预测。
该模型在常用的数据集如enwik8和text8上的表现比RNN模型要好,但它仍有以下缺点:
-
上下文长度受限:字符之间的最大依赖距离受输入长度的限制,模型看不到出现在几个句子之前的单词。
-
上下文碎片:对于长度超过512个字符的文本,都是从头开始单独训练的。段与段之间没有上下文依赖性,会让训练效率低下,也会影响模型的性能。
-
推理速度慢:在测试阶段,每次预测下一个单词,都需要重新构建一遍上下文,并从头开始计算,这样的计算速度非常慢。
-
4.2.2 Transformer XL
Transformer-XL架构在vanilla Transformer的基础上引入了两点创新:循环机制(Recurrence Mechanism)和相对位置编码(Relative Positional Encoding),以克服vanilla Transformer的缺点。与vanilla Transformer相比,Transformer-XL的另一个优势是它可以被用于单词级和字符级的语言建模。
1.引入循环机制
与vanilla Transformer的基本思路一样,Transformer-XL仍然是使用分段的方式进行建模,但其与vanilla Transformer的本质不同是在于引入了段与段之间的循环机制,使得当前段在建模的时候能够利用之前段的信息来实现长期依赖性。如下图所示:
在训练阶段,处理后面的段时,每个隐藏层都会接收两个输入:
这两个输入会被拼接,然后用于计算当前段的Key和Value矩阵。
该方法可以利用前面更多段的信息,测试阶段也可以获得更长的依赖。在测试阶段,与vanilla Transformer相比,其速度也会更快。在vanilla Transformer中,一次只能前进一个step,并且需要重新构建段,并全部从头开始计算;而在Transformer-XL中,每次可以前进一整个段,并利用之前段的数据来预测当前段的输出。
-
该段的前面隐藏层的输出,与vanilla Transformer相同(上图的灰色线)。 -
前面段的隐藏层的输出(上图的绿色线),可以使模型创建长期依赖关系。
2.相对位置编码
在Transformer中,一个重要的地方在于其考虑了序列的位置信息。在分段的情况下,如果仅仅对于每个段仍直接使用Transformer中的位置编码,即每个不同段在同一个位置上的表示使用相同的位置编码,就会出现问题。比如,第i−2i-2i−2段和第i−1i-1i−1段的第一个位置将具有相同的位置编码,但它们对于第iii段的建模重要性显然并不相同(例如第i−2i-2i−2段中的第一个位置重要性可能要低一些)。因此,需要对这种位置进行区分。
论文对于这个问题,提出了一种新的位置编码的方式,即会根据词之间的相对距离而非像Transformer中的绝对位置进行编码。从另一个角度来解读公式的话,可以将attention的计算分为如下四个部分:
-
基于内容的“寻址”,即没有添加原始位置编码的原始分数。 -
基于内容的位置偏置,即相对于当前内容的位置偏差。 -
全局的内容偏置,用于衡量key的重要性。 -
全局的位置偏置,根据query和key之间的距离调整重要性。
详细公式见:Transformer-XL解读(论文 + PyTorch源码,https://blog.csdn.net/magical_bubble/article/details/89060213)
区别主要在于:
-
Bert是直接在输入端显示地通过引入Mask标记,在输入侧隐藏掉一部分单词,让这些单词在预测的时候不发挥作用,要求利用上下文中其它单词去预测某个被Mask掉的单词;
-
而XLNet则抛弃掉输入侧的Mask标记,通过Attention Mask机制,在Transformer内部随机Mask掉一部分单词(这个被Mask掉的单词比例跟当前单词在句子中的位置有关系,位置越靠前,被Mask掉的比例越高,位置越靠后,被Mask掉的比例越低),让这些被Mask掉的单词在预测某个单词的时候不发生作用。
所以,本质上两者并没什么太大的不同,只是Mask的位置,Bert更表面化一些,XLNet则把这个过程隐藏在了Transformer内部而已。这样,就可以抛掉表面的[Mask]标记,解决它所说的预训练里带有[Mask]标记导致的和Fine-tuning过程不一致的问题。至于说XLNet说的,Bert里面被Mask掉单词的相互独立问题,也就是说,在预测某个被Mask单词的时候,其它被Mask单词不起作用,这个问题,你深入思考一下,其实是不重要的,因为XLNet在内部Attention Mask的时候,也会Mask掉一定比例的上下文单词,只要有一部分被Mask掉的单词,其实就面临这个问题。而如果训练数据足够大,其实不靠当前这个例子,靠其它例子,也能弥补被Mask单词直接的相互关系问题,因为总有其它例子能够学会这些单词的相互依赖关系。
当然,XLNet这种改造,维持了表面看上去的自回归语言模型的从左向右的模式,这个Bert做不到,这个有明显的好处,就是对于生成类的任务,能够在维持表面从左向右的生成过程前提下,模型里隐含了上下文的信息。所以看上去,XLNet貌似应该对于生成类型的NLP任务,会比Bert有明显优势。另外,因为XLNet还引入了Transformer XL的机制,所以对于长文档输入类型的NLP任务,也会比Bert有明显优势。
中文XLNet预训练模型:
机器学习通俗易懂系列文章:
-
XLNet原理解读(https://blog.csdn.net/weixin_37947156/article/details/93035607) -
XLNet:运行机制及和Bert的异同比较(https://zhuanlan.zhihu.com/p/70257427)
-
Transformer-XL解读(论文 + PyTorch源码,https://blog.csdn.net/magical_bubble/article/details/89060213)
* 封面图来源:https://www.maxpixel.net/photo-3704026
为您推荐
本篇文章来源于: 深度学习这件小事
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
内容反馈