我们的大脑通常最多能感知三维空间,超过三维就很难想象了。尽管是三维,理解起来也很费劲,所以大多数情况下都使用二维平面。
来自维基百科
不过,我们仍然可以绘制出多维空间,今天就来用 Python 的 plotly 库绘制下三维到六维的图,看看长什么样。
数据我们使用一份来自 UCI 的真实汽车数据集,该数据集包括 205 个样本和 26 个特征,从中选择 6 个特征来绘制图形:
基础工作
安装好 plotly 包:
加载数据集(文末会提供):
下面我们先绘制基础的二维图表,使用两个 RPM 和 Speed 两个特征即可:
绘制 2-D 图
代码实现如下:
保存为 html 文件打开可以生成交互界面,也可以保存为 png 图片。
下面增加特征来绘制三维图。
绘制 3-D 图
可以使用 plotly 的 plot.Scatter3D 方法绘制三维图:
代码实现如下:
如何绘制更高维度的图呢?显然无法通过扩展坐标轴的形式,不过有个小技巧就是制造一个虚拟维度,可以用不同颜色、形状大小、形状类别来入手。这样就可以显示第四个维度了。
绘制 4-D 图
下面我们将第四个变量——车辆油耗(city-mpg)添加到原先的三维图中,用颜色深浅表示,这样就绘制出了四维图。可以看到当其他三个指标(马力、车身重量、车价格)越高时:车辆油耗是越少的。
绘制 5-D 图
基于这样的思想,我们还可以通过修改圆形大小再增加一个维度——发动机尺寸(engine-size)变成五维图:
我们仍然可以比较容易地地发现:车越贵,发动机尺寸越大这样的规律。
绘制 6-D 图
接着还可以通过更改形状的方式增加第六个维度——车门数,圆形表示四车门,方形表示两车门。通常两个车门的都是昂贵的豪华跑车,在图中也可以看出方形主要集中在价格比较高的区域。
这样我们就从普通的二维图扩展到了高维图,当然还可以继续拓展,不过分辨起来会越来越困难。
原文链接:https://medium.com/@prasadostwal/multi-dimension-plots-in-python-from-2d-to-6d-9a2bf7b8cc74
本篇文章来源于: 菜鸟学Python
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ 用Python分析了某大学2000千条表白墙,甜到发腻,原来脱单的秘密是……06/17
- ♥ 探索python运算符的关联性10/17
- ♥ 如何从python中的列表中删除重复项09/19
- ♥ 50条有趣的Python一行代码,建议收藏!08/02
- ♥ 如何在python中查看模块源代码08/25
- ♥ python的pip有什么用10/04
内容反馈