成本砍砍砍!不用数据也能用 BERT 做对比学习? 19
大家好,我是小昌,今天和大家聊一聊如何从 BERT 中获取好的句子表征。 大家都知道,BERT 的设计初衷是为了获得更好的单词表征。但是,利用 BERT 来表征句子的需求无论在学术界还是工业界都是非常紧迫的。因此,当下有许多方法被研究者们提出来去利用 BERT 来获取更好的句子表征。最直接的,就是对句子中的每一个单词的表征相加求均值。 而今天带来的这篇文章则是利用了对比学习,使得只使用 BERT ...
大家好,我是小昌,今天和大家聊一聊如何从 BERT 中获取好的句子表征。 大家都知道,BERT 的设计初衷是为了获得更好的单词表征。但是,利用 BERT 来表征句子的需求无论在学术界还是工业界都是非常紧迫的。因此,当下有许多方法被研究者们提出来去利用 BERT 来获取更好的句子表征。最直接的,就是对句子中的每一个单词的表征相加求均值。 而今天带来的这篇文章则是利用了对比学习,使得只使用 BERT ...
自然语言处理实在是太难啦!中文尤其难! 相比于英文,中文是以词作为语义的基本单位的,因此传统的中文 NLP 都需要先进行分词。分词这步就劝退了很多人,比如“研究生活很充实”,怎么让模型分出“研究|生活”,而不是“研究生”呢? 随着预训练模型的到来,中文模型通常直接用字作为输入。甚至 19 年的一篇 ACL[1] 给出结论:基于“字”的模型要好于基于“词”的模型。但是,中文是以词作为语义的基本单位的...
最近,三个重量级榜单,视觉推理VCR、文本推理ANLI、视觉问答VQA同时被统一模态模型UNIMO霸榜。一个模型统一了视觉和文本两大主阵地,重塑了小编的认知和期望。如此全能,堪称是AI领域的外(一)星(拳)选(超)手(人)!带着兴奋与好奇,我们来解读一下这篇ACL佳作! 论文题目: UNIMO: Towards Unified-Modal Understanding and Generation ...
文:涅生 编:兔子酱 你有尝试从 BERT 提取编码后的 sentence embedding 吗?很多小伙伴的第一反应是:不就是直接取顶层的[CLS] token的embedding作为句子表示嘛,难道还有其他套路不成? nono,你知道这样得到的句子表示捕捉到的语义信息其实很弱吗?今天向大家介绍一篇来自于 CMU 和字节跳动合作,发表在 EMNLP2020 的 paper, 详尽地分析了从预训...
这个世界上有两种极具难度的工程:第一种是把很平常的东西做到最大,例如把语言模型扩大成能够写诗写文写代码的GPT-3;而另一种恰恰相反,是把很平常的东西做到最小。对于NLPer来说,这种“小工程”最迫在眉睫的施展对象非BERT莫属。 从18年那个109M参数的BERT,到52M参数的蒸馏后的DistilBERT,再到14.5M参数的蒸馏更多层的TinyBERT,最后到12M参数的层级共享的ALBER...
背景 当前,大部分中文预训练模型都是以字为基本单位的,也就是说中文语句会被拆分为一个个字。中文也有一些多粒度的语言模型,比如创新工场的ZEN和字节跳动的AMBERT,但这类模型的基本单位还是字,只不过想办法融合了词信息。目前以词为单位的中文预训练模型很少,据笔者所了解到就只有腾讯UER开源了一个以词为颗粒度的BERT模型,但实测效果并不好。 那么,纯粹以词为单位的中文预训练模型效果究竟如何呢?有没...
机器阅读理解任务,相比不少读者都有所了解了,简单来说就是从给定篇章中寻找给定问题的答案,即“篇章 + 问题 → 答案”这样的流程,笔者之前也写过一些关于阅读理解的文章,比如《基于CNN的阅读理解式问答模型:DGCNN》[1]等。至于问答对构建,则相当于是阅读理解的反任务,即“篇章 → 答案 + 问题”的流程,学术上一般直接叫“问题生成(Question Generation)”,因为大多数情况下,...
在2020这个时间节点,对于NLP分类任务,我们的关注重点早已不再是如何构造模型、拘泥于分类模型长什么样子了。如同CV领域当前的重点一样,我们更应该关注如何利用机器学习思想,更好地去解决NLP分类任务中的低耗时、小样本、鲁棒性、不平衡、测试检验、增量学习、长文本等问题。 本文以QA形式探讨了以下问题: NLP分类任务我们每个NLPer都异常熟悉了,其在整个NLP业务中占据着举足轻重的地位,更多领域...
一只小狐狸带你解锁炼丹术&NLP秘籍 背景 文本纠错(Spelling Error Correction)技术常用于文本的预处理阶段。在搜索引擎、输入法和 OCR 中有着广泛的应用。2020年的文本纠错自然也离不开 BERT 的表演。但原生的 BERT 在一些NLP任务如error detection、NER中表现欠佳,说明预训练阶段的学习目标中对相关模式的捕获非常有限,需要根据任务进行一...
一只小狐狸带你解锁炼丹术&NLP秘籍 神经网络模型除了部署在远程服务器之外,也会部署在手机、音响等智能硬件上。比如在自动驾驶的场景下,大部分模型都得放在车上的终端里,不然荒山野岭没有网的时候就尴尬了。对于BERT这类大模型来说,也有部署在终端的需求,但考虑到设备的运算速度和内存大小,是没法部署完整版的,必须对模型进行瘦身压缩。 说到模型压缩,常用的方法有以下几种: 量化:用FP16或者IN...
推广返利