垃圾回收
1.1 refchain
Python的C源码中有refchain的循环双向链表。在 Python 程序中一旦创建了一个对象,该对象就会被添加到 refchain 的链表中以存储所有对象。
name = "皮卡丘"
width = 5
1.2引用计数器
refchain中的所有对象里面都有一个ob_refcnt用来保存当前对象的引用计数器
name = "皮卡丘"
width = 5
nickname = name
上面代码表示内存中有5和“皮卡丘”两个值,它们的引用计数器分别为1和2
当多次引用该值时,不会在内存中重复创建数据,但引用计数器会+1。当对象被销毁时,引用计数器会同时为-1。如果引用计数器为0,则该对象会从refchain链表中删除,同时在内存中销毁(缓存等特殊情况除外)。
name = "皮卡丘"nickname = name # 对象”皮卡丘“的引用计数器+1del name 对象"皮卡丘"的引用计数器-1def run(arg):
print(arg)
run(nickname) # 刚开始执行函数时,对象”皮卡丘“引用计数器+1,当函数执行完毕之后,对象引用计数器-1name_list = ["张三","法外狂徒",name] # 对象”皮卡丘“的引用计数器+1
但是这种方式仍然存在BUG。当存在循环引用时,有些数据将无法正常恢复,如
v1 = [11,22,33] # refchain中创建一个列表对象,由于v1=对象,所以列表引对象用计数器为1.
v2 = [44,55,66] # refchain中再创建一个列表对象,因v2=对象,所以列表对象引用计数器为1.
v1.append(v2) # 把v2追加到v1中,则v2对应的[44,55,66]对象的引用计数器加1,最终为2.
v2.append(v1) # 把v1追加到v1中,则v1对应的[11,22,33]对象的引用计数器加1,最终为2.
del v1 # 引用计数器-1del v2 # 引用计数器-1
对于上面的代码,执行del操作后,没有变量会使用这两个list对象,但是由于循环引用的问题,它们的引用计数器不为0,所以它们的status: will never be used, and will not be被毁。如果项目中这样的代码太多,就会消耗内存,直到内存耗尽,程序崩溃。
1.3标记清除&分代回收
标记清除:创建特殊链表专门用于保存 列表、元组、字典、集合、自定义类等对象,之后再去检查这个链表中的对象是否存在循环引用,如果存在则让双方的引用计数器均 - 1 。
分代回收:对标记清楚中的链表进行优化,将那些可能存在循环引用的对象拆分到3个链表,链表成为0/1/2三代,每代都可以存储对象和阈值,当达到阈值时,就会对相应的链表中的每个对象做一次扫描,除循环引用各自减1并且销毁引用计数器为0的对象。`
// 分代的C源码#define NUM_GENERATIONS 3struct gc_generation generations[NUM_GENERATIONS] = {
/* PyGC_Head, threshold, count */
{{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0}, // 0代
{{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0}, // 1代
{{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0}, // 2代};
在第0代中,count表示第0代链表中对象的个数,threshold表示第0代链表中对象的阈值个数。如果超过,则执行第 0 代扫描检查。
1代,count表示0代链表被扫描的次数,threshold表示0代链表被扫描次数的阈值。如果超过,则执行第 1 代扫描检查。
2代,count表示第1代链表被扫描的次数,threshold表示第1代链表被扫描的次数阈值。如果超过,则执行第 2 代扫描检查。
1.4缓存机制
实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。Python中引入了“缓存机制”机制。
例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为free_list的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。
float类型,维护的free_list链表最多可缓存100个float对象。
1. `v1 = 3.14 # 开辟内存来存储float对象,并将对象添加到refchain链表。`
2. `print( id(v1) ) # 内存地址:4436033488`
3. `del v1 # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list.`
4. `v2 = 9.999 # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。`
5. `print( id(v2) ) # 内存地址:4436033488`
7. `# 注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。`
int类型,不是基于free_list,而是维护了一个small_ints链表来保存普通数据(小数据池),小数据池范围:-5 <= value < 257。即:当这个范围内的整数被复用时,内存不会重新打开。
v1 = 38 # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。
print( id(v1)) #内存地址:4514343712
v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。
print( id(v2) ) #内存地址:4514343712
# 注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1,代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0(初始化时就设置为1了),所以也不会被销毁。
str类型维护了unicode_latin1[256]链表,内部缓存了所有ascii字符,这样以后使用的时候不会重复创建。
v1 = "A"
print( id(v1) ) # 输出:4517720496
del v1
v2 = "A"
print( id(v1) ) # 输出:4517720496
# 除此之外,Python内部还对字符串做了驻留机制,针对那么只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。
v1 = "wupeiqi"
v2 = "wupeiqi"
print(id(v1) == id(v2)) # 输出:True
list类型,维护的free_list数组最多可缓存80个list对象。
v1 = [11,22,33]
print( id(v1) ) # 输出:4517628816
del v1
v2 = ["小猪","佩奇"]
print( id(v2) ) # 输出:4517628816
tuple类型维护了一个容量为20的free_list数组,数组中的元素可以是链表,每个链表最多可以容纳2000个tuple对象。元组的free_list数组存储数据时,根据元组能容纳的个数作为索引在free_list数组中找到对应的链表,加入到链表中。
v1 = (1,2)
print( id(v1) ) del v1 # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。
v2 = ("小猪","佩奇") # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。
print( id(v2) )
dict类型,维护的free_list数组最多可缓存80个dict对象。
v1 = {"k1":123}
print( id(v1) ) # 输出:4515998128
del v1
v2 = {"name":"武沛齐","age":18,"gender":"男"}
print( id(v1) ) # 输出:4515998128
2 C语言源码分析
2.1两个重要的结构体
#define PyObject_HEAD PyObject ob_base;#define PyObject_VAR_HEAD PyVarObject ob_base;// 宏定义,包含 上一个、下一个,用于构造双向链表用。(放到refchain链表中时,要用到)#define _PyObject_HEAD_EXTRA \
struct _object *_ob_next; \
struct _object *_ob_prev;typedef struct _object {
_PyObject_HEAD_EXTRA // 用于构造双向链表
Py_ssize_t ob_refcnt; // 引用计数器
struct _typeobject *ob_type; // 数据类型} PyObject;typedef struct {
PyObject ob_base; // PyObject对象
Py_ssize_t ob_size; /* Number of items in variable part,即:元素个数 */} PyVarObject;
PyObject 和 PyVarObject 这两个结构体是基石,它们保存了其他数据类型的公共部分,例如:每种类型的对象在创建时都有 PyObject 中的 4 部分数据; list/set/tuple等由多个元素组成组成对象创建时,PyVarObject中有5部分数据。
2.2常见类型结构体
通常我们在创建一个对象的时候,本质上是实例化一个相关类型的结构体,并在内部存储值和引用计数器。
float类型
typedef struct {
PyObject_HEAD double ob_fval;
} PyFloatObject;
int类型
struct _longobject {
PyObject_VAR_HEAD
digit ob_digit[1];
}; /* Long (arbitrary precision) integer object interface */
typedef struct _longobject PyLongObject; /* Revealed in longintrepr.h */
str类型
typedef struct {
PyObject_HEAD
Py_ssize_t length; /* Number of code points in the string */
Py_hash_t hash; /* Hash value; -1 if not set */
struct {
unsigned int interned:2; /* Character size:
- PyUnicode_WCHAR_KIND (0):
* character type = wchar_t (16 or 32 bits, depending on the
platform)
- PyUnicode_1BYTE_KIND (1):
* character type = Py_UCS1 (8 bits, unsigned)
* all characters are in the range U+0000-U+00FF (latin1)
* if ascii is set, all characters are in the range U+0000-U+007F
(ASCII), otherwise at least one character is in the range
U+0080-U+00FF
- PyUnicode_2BYTE_KIND (2):
* character type = Py_UCS2 (16 bits, unsigned)
* all characters are in the range U+0000-U+FFFF (BMP)
* at least one character is in the range U+0100-U+FFFF
- PyUnicode_4BYTE_KIND (4):
* character type = Py_UCS4 (32 bits, unsigned)
* all characters are in the range U+0000-U+10FFFF
* at least one character is in the range U+10000-U+10FFFF
*/
unsigned int kind:3; unsigned int compact:1; unsigned int ascii:1; unsigned int ready:1; unsigned int :24;
} state; wchar_t *wstr; /* wchar_t representation (null-terminated) */
} PyASCIIObject; typedef struct {
PyASCIIObject _base;
Py_ssize_t utf8_length; /* Number of bytes in utf8, excluding the
* terminating \0. */
char *utf8; /* UTF-8 representation (null-terminated) */
Py_ssize_t wstr_length; /* Number of code points in wstr, possible
* surrogates count as two code points. */
} PyCompactUnicodeObject; typedef struct {
PyCompactUnicodeObject _base; union { void *any;
Py_UCS1 *latin1;
Py_UCS2 *ucs2;
Py_UCS4 *ucs4;
} data; /* Canonical, smallest-form Unicode buffer */
} PyUnicodeObject;
list类型
typedef struct {
PyObject_VAR_HEAD
PyObject **ob_item;
Py_ssize_t allocated;
} PyListObject;
tuple类型
typedef struct {
PyObject_VAR_HEAD
PyObject *ob_item[1];
} PyTupleObject;
dict类型
typedef struct {
PyObject_HEAD
Py_ssize_t ma_used;
PyDictKeysObject *ma_keys;
PyObject **ma_values;
} PyDictObject;
通过通用的结构,可以基本了解每个对象内部本质上存储的数据。
扩展:在结构部分,你应该会发现str类型比较麻烦,因为python字符串在处理的时候需要考虑编码问题,这是内部规定的(见源码结构):
如果字符串只包含ascii,每个字符用1个字节表示,即如果latin1字符串包含中文等,每个字符用2个字节表示,也就是如果ucs2字符串包含emoji等,则每个字符用4个字节表示,即:ucs4
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ python中的while 1是什么意思08/24
- ♥ python不可变类型详解11/19
- ♥ 如何理解python中的断言错误10/20
- ♥ 如何退出python控制台10/15
- ♥ Python判断是否为函数09/28
- ♥ 如何用 vim 运行 python09/29
内容反馈