知行编程网知行编程网  2022-12-25 22:00 知行编程网 隐藏边栏  33 
文章评分 0 次,平均分 0.0
导语: 本文主要介绍了关于python中Sobel算子如何使用的相关知识,希望可以帮到处于编程学习途中的小伙伴

python中Sobel算子的使用方法


说明

1、Sobel算子根据像素上下左右相邻点的灰度加权差值,边缘达到极值的现象来检测边缘。

它具有平滑的噪声功能,并提供更准确的边缘方向信息。由于Sobel算子结合了高斯平滑和微分求导(微分),所以结果会更抗噪。当精度要求不高时,Sobel算子是一种常用的边缘检测方法。

2、Sobel算子仍然是过滤器,但它有方向。

dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])


实例

# coding=utf-8
import cv2
import numpy as np
 
img = cv2.imread("D:/test/26.png", 0)
 
'''
在Sobel函数的第二个参数这里使用了cv2.CV_16S。
因为OpenCV文档中对Sobel算子的介绍中有这么一句:
“in the case of 8-bit input images it will result in truncated derivatives”。
即Sobel函数求完导数后会有负值,还有会大于255的值。
而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。
因此要使用16位有符号的数据类型,即cv2.CV_16S。
在经过处理后,别忘了用convertScaleAbs()函数将其转回原来的uint8形式。
否则将无法显示图像,而只是一副灰色的窗口。convertScaleAbs()的原型为:
dst = cv2.convertScaleAbs(src[, dst[, alpha[, beta]]])
其中可选参数alpha是伸缩系数,beta是加到结果上的一个值。结果返回uint8类型的图片。
由于Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted(...)函数将其组合起来。
其函数原型为:
dst = cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])
其中alpha是第一幅图片中元素的权重,beta是第二个的权重,gamma是加到最后结果上的一个值。
'''
 
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
 
absX = cv2.convertScaleAbs(x)# 转回uint8
absY = cv2.convertScaleAbs(y)
 
dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
 
cv2.imshow("orign", img)
cv2.imshow("absX", absX)
cv2.imshow("absY", absY)
 
cv2.imshow("Result", dst)
 
cv2.waitKey(0)
cv2.destroyAllWindows()


本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

本文为原创文章,版权归所有,欢迎分享本文,转载请保留出处!

知行编程网
知行编程网 关注:1    粉丝:1
这个人很懒,什么都没写
扫一扫二维码分享