Python 线程与进程
线程是操作系统可以进行操作调度的最小单位。它包含在流程中,是流程中的实际操作单元。线程是指进程中的单个顺序控制流。一个进程可以同时拥有多个线程,每个线程并行执行不同的任务。
使用 threading 模块
方法一:
import threading
import time
def foo(n):
print('foo %s'%n)
time.sleep(1)
print('end foo')
def bar(n):
print('bar %s'%n)
time.sleep(2)
print('end bar')
t1 = threading.Thread(target=foo, args=(1,))
t2 = threading.Thread(target=bar, args=(2,))
t1.start()
t2.start()
print('........in the main..........')
运行结果:
foo 1
bar 2
........in the main..........
end foo
end bar
方法二:
import time, threading
class MyThread(threading.Thread):
def __init__(self, num):
threading.Thread.__init__(self)
self.num = num
def run(self): #定义线程要运行的函数
print("running on number:%s" % self.num)
time.sleep(3)
if __name__ == '__main__':
t1 = MyThread(1)
t2 = MyThread(2)
t1.start()
t2.start()
运行结果:
running on number:1
running on number:2
join 方法使得主线程等待子线程完成才继续
import threading
import time
begin = time.time()
def foo(n):
print('foo %s'%n)
time.sleep(1)
print('end foo')
def bar(n):
print('bar %s'%n)
time.sleep(2)
print('end bar')
t1 = threading.Thread(target=foo, args=(1,))
t2 = threading.Thread(target=bar, args=(2,))
t1.start()
t2.start()
t1.join()
t2.join()
print('........in the main..........')
运行结果:
foo 1
bar 2
end foo
end bar
........in the main..........
在计算密集型任务中串行与多线程进行对比
import threading, time
begin = time.time()
def add(n):
sum = 0
for i in range(n):
sum += i
print(sum)
add(100000000)
add(200000000)
end = time.time()
print(end-begin)
运行结果:
4999999950000000
19999999900000000
17.66856598854065
import threading, time
begin = time.time()
def add(n):
sum = 0
for i in range(n):
sum += i
print(sum)
t1 = threading.Thread(target=add, args=(100000000,))
t1.start()
t2 = threading.Thread(target=add, args=(200000000,))
t2.start()
t1.join()
t2.join()
end = time.time()
print(end-begin)
运行结果:
4999999950000000
19999999900000000
21.088160276412964
# 结果为串行运行比多线程运行更快
Cpython中有GIL(Global Interpreter Lock),所以一次只能有一个线程进入调度。如果任务是IO密集型的,可以使用多线程;如果任务是计算密集型的,则最佳方法是更改为 C。
setDaemon()
只要主线程完成调用该方法,无论子线程是否完成,都会与主线程一起退出。
threading.currentThread()
返回当前的线程变量。
threading.active_count()
返回正在运行的线程数量。
import threading, time
from time import ctime,sleep
def music(func):
print(threading.current_thread())
for i in range(2):
print("Begin listening to %s. %s" %(func, ctime()))
sleep(2)
print("end listening %s" %ctime())
def movie(func):
print(threading.current_thread())
for i in range(2):
print("Begin watching at the %s %s" %{func, ctime()})
sleep(4)
print("end watching %s" %ctime())
threads = []
t1 = threading.Thread(target=music, args=('klvchen',))
threads.append(t1)
t2 = threading.Thread(target=movie, args=('lili',))
threads.append(t2)
if __name__ == '__main__':
for t in threads:
t.setDaemon(True)
t.start()
print(threading.current_thread())
print(threading.active_count())
print("all over %s" %ctime())
运行结果:
<Thread(Thread-1, started daemon 5856)>
Begin listening to klvchen. Wed Jul 11 23:43:51 2018
<Thread(Thread-2, started daemon 9124)>
<_MainThread(MainThread, started 9444)>
3
all over Wed Jul 11 23:43:51 2018
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ 子类可以在python中调用父类的方法吗?12/07
- ♥ python列表加减法怎么做09/12
- ♥ 什么是python字节10/17
- ♥ 如何使用 python ORM 创建数据库表?01/10
- ♥ 人工智能python好学吗?11/19
- ♥ 如何用python画一个心形09/23
内容反馈