小编介绍过
,在numpy.append()有三个参数,其中
arr和values会重新组合成一个新的数组,做为返回值。而axis是一个可选的值,根据不同的
axis的不同条件,
numpy.append()的使用方法也不同,本文介绍numpy.append()中axis三种用法。
numpy.append()中axis三种用法
1、axis无定义:返回总是为一维数组
如果axis没有给出,那么arr,values都将先展平成一维数组。
返回由arr和values组成的新数组。
import numpy as np
a=[1,2,3]
b=[4,5]
c=[[6,7],[8,9]]
print(np.append(a,b))
print(np.append(a,c))
输出
[1 2 3 4 5]
[1 2 3 6 7 8 9]
2、axis=0的情况:数组是加在下面(列数要相同)
axis=0,表示对第一个维度进行操作,可以简单理解为添加到直线上。所以行数增加,列数保持不变。
import numpy as np
aa= np.zeros((1,8))
bb=np.ones((3,8))
c = np.append(aa,bb,axis = 0)
print(c)
输出
[[ 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1. 1. 1.]]
3、axis=1的情况:数组是加在右边(行数要相同)
拓展列,行数不变。行数需要相同。
import numpy as np
DYX = np.zeros((3,1))
HXH = np.ones((3,8))
XH = np.append(DYX, HXH,axis=1)
print(DYX) #(3,1)
"""
[[0.]
[0.]
[0.]]
"""
print(HXH) # (3,8)
"""
[[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]]
"""
#最终结果:
print(XH)
"""
[[0. 1. 1. 1. 1. 1. 1. 1. 1.]
[0. 1. 1. 1. 1. 1. 1. 1. 1.]
[0. 1. 1. 1. 1. 1. 1. 1. 1.]]
"""
print(XH.shape) #(3, 9)
#axis = 1,在第二维上拼接,所以说,(3,1)和(3,8)就变成了(3,9)
numpy.append()语法格式
numpy.append(arr, values, axis=None):
以上就是numpy.append()中axis三种用法介绍,希望能对你有所帮助哟~更多python高级学习推荐:
。
(推荐操作系统:windows7系统、Python 3.9.1,DELL G3电脑。)
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ python标识符是什么意思?09/08
- ♥ 浅谈Python异常处理机制12/13
- ♥ python pip无法安装怎么办01/01
- ♥ 如何在python运算符中选择is和==?12/20
- ♥ Python操作微信客户端:WechatPCAPI库实现自动回复09/23
- ♥ 如何在python3中取幂11/13
内容反馈