知行编程网知行编程网  2022-10-17 23:00 知行编程网 隐藏边栏  4 
文章评分 0 次,平均分 0.0
导语: 本文主要介绍了关于深入理解Python随机数生成模块:random的相关知识,包括random怎样安装,以及python按概率生成随机数这些编程知识,希望对大家有参考作用。

深入理解Python随机数生成模块:random


一、概述

random模块

用于生成伪随机数

之所以称其为伪随机数,是因为真实的随机数(或随机事件)是在一定的生成过程中,根据实验过程中显示的分布概率随机生成的,其结果是不可预测的。可见的。计算机中的随机函数是按照一定的算法模拟出来的,结果是确定的、可见的。我们可以认为这种可预测的结果有 100% 的发生机会。因此,计算机的随机函数产生的“随机数”并不是随机的,而是一个伪随机数。

计算机的伪随机数是随机种子按照一定的计算方法计算出来的值。因此,只要计算方法确定,随机种子确定,生成的随机数就是固定的。

只要用户或第三方没有设置随机种子,默认情况下随机种子来自系统时钟。

这个 Python 库在底层使用了通用算法。经过长时间的测试,可靠性不能说,但绝对不能用于密码相关的功能。


二、基本方法

random.seed(a=None, version=2)

初始化伪随机数生成器。如果未提供a或者a=None,则使用系统时间为种子。如果a是一个整数,则作为种子。

random.getstate()

返回一个当前生成器的内部状态的对象

random.setstate(state)

传入一个先前利用getstate方法获得的状态对象,使得生成器恢复到这个状态。

random.getrandbits(k)

返回一个不大于K位的Python整数(十进制),比如k=10,则结果在0~2^10之间的整数。


三、针对整数的方法

random.randrange(stop)

random.randrange(start, stop[, step])

等同于choice(range(start, stop, step)),但并不实际创建range对象。

random.randint(a, b)

返回一个a <= N <= b的随机整数N。等同于 randrange(a, b+1)


四、针对序列类结构的方法

random.choice(seq)

从非空序列seq中随机选取一个元素。如果seq为空则弹出 IndexError异常。

random.choices(population, weights=None, *, cum_weights=None, k=1)

3.6版本新增。从population集群中随机抽取K个元素。weights是相对权重列表,cum_weights是累计权重,两个参数不能同时存在。

random.shuffle(x[, random])

随机打乱序列x内元素的排列顺序。只能针对可变的序列,对于不可变序列,请使用下面的sample()方法。

random.sample(population, k)

从population样本或集合中随机抽取K个不重复的元素形成新的序列。常用于不重复的随机抽样。返回的是一个新的序列,不会破坏原有序列。要从一个整数区间随机抽取一定数量的整数,请使用sample(range(10000000), k=60)类似的方法,这非常有效和节省空间。如果k大于population的长度,则弹出ValueError异常。


五、真值分布

random模块最高端的功能其实在这里。

random.random()

返回一个介于左闭右开[0.0, 1.0)区间的浮点数

random.uniform(a, b)

返回一个介于a和b之间的浮点数。如果a>b,则是b到a之间的浮点数。这里的a和b都有可能出现在结果中。

random.triangular(low, high, mode)

返回一个low <= N <=high的三角形分布的随机数。参数mode指明众数出现位置。

random.betavariate(alpha, beta)

β分布。返回的结果在0~1之间

random.expovariate(lambd)

指数分布

random.gammavariate(alpha, beta)

伽马分布

random.gauss(mu, sigma)

高斯分布

random.lognormvariate(mu, sigma)

对数正态分布

random.normalvariate(mu, sigma)

正态分布

random.vonmisesvariate(mu, kappa)

卡帕分布

random.paretovariate(alpha)

帕累托分布

random.weibullvariate(alpha, beta)


六、可选择的生成器

class random.SystemRandom([seed])

使用os.urandom()方法生成随机数的类,源码由操作系统提供,不一定所有系统都支持


七、典型的例子

>>> random()               # 随机浮点数: 0.0 <= x < 1.0
0.37444887175646646
>>> uniform(2.5, 10.0)          # 随机浮点数: 2.5 <= x < 10.0
3.1800146073117523
>>> randrange(10)            # 0-9的整数:
7
>>> randrange(0, 101, 2)         # 0-100的偶数
26
>>> choice(['win', 'lose', 'draw'])   # 从序列随机选择一个元素
'draw'
>>> deck = 'ace two three four'.split()
>>> shuffle(deck)            # 对序列进行洗牌,改变原序列
>>> deck
['four', 'two', 'ace', 'three']
>>> sample([10, 20, 30, 40, 50], k=4)  # 不改变原序列的抽取指定数目样本,并生成新序列
[40, 10, 50, 30]
>>> # 6次旋转红黑绿轮盘(带权重可重复的取样),不破坏原序列
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']
>>> # 德州扑克计算概率Deal 20 cards without replacement from a deck of 52 playing cards
>>> # and determine the proportion of cards with a ten-value
>>> # (a ten, jack, queen, or king).
>>> deck = collections.Counter(tens=16, low_cards=36)
>>> seen = sample(list(deck.elements()), k=20)
>>> seen.count('tens') / 20
0.15
>>> # 模拟概率Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> trial = lambda: choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
>>> sum(trial() for i in range(10000)) / 10000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> trial = lambda : 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
>>> sum(trial() for i in range(10000)) / 10000
0.7958

本文为原创文章,版权归所有,欢迎分享本文,转载请保留出处!

知行编程网
知行编程网 关注:1    粉丝:1
这个人很懒,什么都没写
扫一扫二维码分享